Cargando…
Analyzing Neuroimaging Data Through Recurrent Deep Learning Models
The application of deep learning (DL) models to neuroimaging data poses several challenges, due to the high dimensionality, low sample size, and complex temporo-spatial dependency structure of these data. Even further, DL models often act as black boxes, impeding insight into the association of cogn...
Autores principales: | Thomas, Armin W., Heekeren, Hauke R., Müller, Klaus-Robert, Samek, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914836/ https://www.ncbi.nlm.nih.gov/pubmed/31920491 http://dx.doi.org/10.3389/fnins.2019.01321 |
Ejemplares similares
-
Editorial: Recent Developments of Deep Learning in Analyzing, Decoding, and Understanding Neuroimaging Signals
por: Li, Junhua
Publicado: (2021) -
Editorial: Advanced deep learning approaches for medical neuroimaging data with limitation
por: Tang, Zhiri, et al.
Publicado: (2023) -
Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data
por: Seong, Si-Baek, et al.
Publicado: (2018) -
Deep learning for neuroimaging: a validation study
por: Plis, Sergey M., et al.
Publicado: (2014) -
Explaining the unique nature of individual gait patterns with deep learning
por: Horst, Fabian, et al.
Publicado: (2019)