Cargando…
Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
A deep Q network (DQN) (Mnih et al., 2013) is an extension of Q learning, which is a typical deep reinforcement learning method. In DQN, a Q function expresses all action values under all states, and it is approximated using a convolutional neural network. Using the approximated Q function, an optim...
Autores principales: | Ohnishi, Shota, Uchibe, Eiji, Yamaguchi, Yotaro, Nakanishi, Kosuke, Yasui, Yuji, Ishii, Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914867/ https://www.ncbi.nlm.nih.gov/pubmed/31920613 http://dx.doi.org/10.3389/fnbot.2019.00103 |
Ejemplares similares
-
Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces
por: Elfwing, Stefan, et al.
Publicado: (2013) -
Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task
por: Kinjo, Ken, et al.
Publicado: (2013) -
Cooperative and Competitive Reinforcement and Imitation Learning for a Mixture of Heterogeneous Learning Modules
por: Uchibe, Eiji
Publicado: (2018) -
A Distributed Multi-Agent Formation Control Method Based on Deep Q Learning
por: Xie, Nianhao, et al.
Publicado: (2022) -
Consolidated learning can be susceptible to gradually-developing interference in prolonged motor learning
por: Yotsumoto, Yuko, et al.
Publicado: (2013)