Cargando…
Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing
Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915074/ https://www.ncbi.nlm.nih.gov/pubmed/31920588 http://dx.doi.org/10.3389/fnhum.2019.00427 |
_version_ | 1783479946821238784 |
---|---|
author | Kaas, Amanda Goebel, Rainer Valente, Giancarlo Sorger, Bettina |
author_facet | Kaas, Amanda Goebel, Rainer Valente, Giancarlo Sorger, Bettina |
author_sort | Kaas, Amanda |
collection | PubMed |
description | Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but can be challenging if not grounded in recent experience in these modalities, e.g., in patients with locked-in-syndrome (LIS). In contrast, somatosensory imagery might constitute a more suitable information-encoding strategy as the somatosensory function is often very robust. Somatosensory imagery has been shown to activate the somatotopic cortex, but it has been unclear so far whether it can be reliably detected on a single-trial level and successfully classified according to specific somatosensory imagery content. Using ultra-high field 7-T fMRI, we show reliable and high-accuracy single-trial decoding of left-foot (LF) vs. right-hand (RH) somatosensory imagery. Correspondingly, higher decoding accuracies were associated with greater spatial separation of hand and foot decoding-weight patterns in the primary somatosensory cortex (S1). Exploiting these novel neuroscientific insights, we developed—and provide a proof of concept for—basic BCI communication by showing that binary (yes/no) answers encoded by somatosensory imagery can be decoded with high accuracy in simulated real-time (in 7 subjects) as well as in real-time (1 subject). This study demonstrates that body part-specific somatosensory imagery differentially activates somatosensory cortex in a topographically specific manner; evidence which was surprisingly still lacking in the literature. It also offers proof of concept for a novel somatosensory imagery-based fMRI-BCI control strategy, with particularly high potential for visually and motor-impaired patients. The strategy could also be transferred to lower MRI field strengths and to mobile functional near-infrared spectroscopy. Finally, given that communication BCIs provide the BCI user with a form of feedback based on their brain signals and can thus be considered as a specific form of neurofeedback, and that repeated use of a BCI has been shown to enhance underlying representations, we expect that the current BCI could also offer an interesting new approach for somatosensory rehabilitation training in the context of stroke and phantom limb pain. |
format | Online Article Text |
id | pubmed-6915074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69150742020-01-09 Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing Kaas, Amanda Goebel, Rainer Valente, Giancarlo Sorger, Bettina Front Hum Neurosci Human Neuroscience Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but can be challenging if not grounded in recent experience in these modalities, e.g., in patients with locked-in-syndrome (LIS). In contrast, somatosensory imagery might constitute a more suitable information-encoding strategy as the somatosensory function is often very robust. Somatosensory imagery has been shown to activate the somatotopic cortex, but it has been unclear so far whether it can be reliably detected on a single-trial level and successfully classified according to specific somatosensory imagery content. Using ultra-high field 7-T fMRI, we show reliable and high-accuracy single-trial decoding of left-foot (LF) vs. right-hand (RH) somatosensory imagery. Correspondingly, higher decoding accuracies were associated with greater spatial separation of hand and foot decoding-weight patterns in the primary somatosensory cortex (S1). Exploiting these novel neuroscientific insights, we developed—and provide a proof of concept for—basic BCI communication by showing that binary (yes/no) answers encoded by somatosensory imagery can be decoded with high accuracy in simulated real-time (in 7 subjects) as well as in real-time (1 subject). This study demonstrates that body part-specific somatosensory imagery differentially activates somatosensory cortex in a topographically specific manner; evidence which was surprisingly still lacking in the literature. It also offers proof of concept for a novel somatosensory imagery-based fMRI-BCI control strategy, with particularly high potential for visually and motor-impaired patients. The strategy could also be transferred to lower MRI field strengths and to mobile functional near-infrared spectroscopy. Finally, given that communication BCIs provide the BCI user with a form of feedback based on their brain signals and can thus be considered as a specific form of neurofeedback, and that repeated use of a BCI has been shown to enhance underlying representations, we expect that the current BCI could also offer an interesting new approach for somatosensory rehabilitation training in the context of stroke and phantom limb pain. Frontiers Media S.A. 2019-12-05 /pmc/articles/PMC6915074/ /pubmed/31920588 http://dx.doi.org/10.3389/fnhum.2019.00427 Text en Copyright © 2019 Kaas, Goebel, Valente and Sorger. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Human Neuroscience Kaas, Amanda Goebel, Rainer Valente, Giancarlo Sorger, Bettina Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title | Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title_full | Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title_fullStr | Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title_full_unstemmed | Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title_short | Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing |
title_sort | topographic somatosensory imagery for real-time fmri brain-computer interfacing |
topic | Human Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915074/ https://www.ncbi.nlm.nih.gov/pubmed/31920588 http://dx.doi.org/10.3389/fnhum.2019.00427 |
work_keys_str_mv | AT kaasamanda topographicsomatosensoryimageryforrealtimefmribraincomputerinterfacing AT goebelrainer topographicsomatosensoryimageryforrealtimefmribraincomputerinterfacing AT valentegiancarlo topographicsomatosensoryimageryforrealtimefmribraincomputerinterfacing AT sorgerbettina topographicsomatosensoryimageryforrealtimefmribraincomputerinterfacing |