Cargando…

Passing the Message: Representation Transfer in Modular Balanced Networks

Neurobiological systems rely on hierarchical and modular architectures to carry out intricate computations using minimal resources. A prerequisite for such systems to operate adequately is the capability to reliably and efficiently transfer information across multiple modules. Here, we study the fea...

Descripción completa

Detalles Bibliográficos
Autores principales: Zajzon, Barna, Mahmoudian, Sepehr, Morrison, Abigail, Duarte, Renato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915101/
https://www.ncbi.nlm.nih.gov/pubmed/31920605
http://dx.doi.org/10.3389/fncom.2019.00079
_version_ 1783479953154637824
author Zajzon, Barna
Mahmoudian, Sepehr
Morrison, Abigail
Duarte, Renato
author_facet Zajzon, Barna
Mahmoudian, Sepehr
Morrison, Abigail
Duarte, Renato
author_sort Zajzon, Barna
collection PubMed
description Neurobiological systems rely on hierarchical and modular architectures to carry out intricate computations using minimal resources. A prerequisite for such systems to operate adequately is the capability to reliably and efficiently transfer information across multiple modules. Here, we study the features enabling a robust transfer of stimulus representations in modular networks of spiking neurons, tuned to operate in a balanced regime. To capitalize on the complex, transient dynamics that such networks exhibit during active processing, we apply reservoir computing principles and probe the systems' computational efficacy with specific tasks. Focusing on the comparison of random feed-forward connectivity and biologically inspired topographic maps, we find that, in a sequential set-up, structured projections between the modules are strictly necessary for information to propagate accurately to deeper modules. Such mappings not only improve computational performance and efficiency, they also reduce response variability, increase robustness against interference effects, and boost memory capacity. We further investigate how information from two separate input streams is integrated and demonstrate that it is more advantageous to perform non-linear computations on the input locally, within a given module, and subsequently transfer the result downstream, rather than transferring intermediate information and performing the computation downstream. Depending on how information is integrated early on in the system, the networks achieve similar task-performance using different strategies, indicating that the dimensionality of the neural responses does not necessarily correlate with nonlinear integration, as predicted by previous studies. These findings highlight a key role of topographic maps in supporting fast, robust, and accurate neural communication over longer distances. Given the prevalence of such structural feature, particularly in the sensory systems, elucidating their functional purpose remains an important challenge toward which this work provides relevant, new insights. At the same time, these results shed new light on important requirements for designing functional hierarchical spiking networks.
format Online
Article
Text
id pubmed-6915101
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-69151012020-01-09 Passing the Message: Representation Transfer in Modular Balanced Networks Zajzon, Barna Mahmoudian, Sepehr Morrison, Abigail Duarte, Renato Front Comput Neurosci Neuroscience Neurobiological systems rely on hierarchical and modular architectures to carry out intricate computations using minimal resources. A prerequisite for such systems to operate adequately is the capability to reliably and efficiently transfer information across multiple modules. Here, we study the features enabling a robust transfer of stimulus representations in modular networks of spiking neurons, tuned to operate in a balanced regime. To capitalize on the complex, transient dynamics that such networks exhibit during active processing, we apply reservoir computing principles and probe the systems' computational efficacy with specific tasks. Focusing on the comparison of random feed-forward connectivity and biologically inspired topographic maps, we find that, in a sequential set-up, structured projections between the modules are strictly necessary for information to propagate accurately to deeper modules. Such mappings not only improve computational performance and efficiency, they also reduce response variability, increase robustness against interference effects, and boost memory capacity. We further investigate how information from two separate input streams is integrated and demonstrate that it is more advantageous to perform non-linear computations on the input locally, within a given module, and subsequently transfer the result downstream, rather than transferring intermediate information and performing the computation downstream. Depending on how information is integrated early on in the system, the networks achieve similar task-performance using different strategies, indicating that the dimensionality of the neural responses does not necessarily correlate with nonlinear integration, as predicted by previous studies. These findings highlight a key role of topographic maps in supporting fast, robust, and accurate neural communication over longer distances. Given the prevalence of such structural feature, particularly in the sensory systems, elucidating their functional purpose remains an important challenge toward which this work provides relevant, new insights. At the same time, these results shed new light on important requirements for designing functional hierarchical spiking networks. Frontiers Media S.A. 2019-12-05 /pmc/articles/PMC6915101/ /pubmed/31920605 http://dx.doi.org/10.3389/fncom.2019.00079 Text en Copyright © 2019 Zajzon, Mahmoudian, Morrison and Duarte. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zajzon, Barna
Mahmoudian, Sepehr
Morrison, Abigail
Duarte, Renato
Passing the Message: Representation Transfer in Modular Balanced Networks
title Passing the Message: Representation Transfer in Modular Balanced Networks
title_full Passing the Message: Representation Transfer in Modular Balanced Networks
title_fullStr Passing the Message: Representation Transfer in Modular Balanced Networks
title_full_unstemmed Passing the Message: Representation Transfer in Modular Balanced Networks
title_short Passing the Message: Representation Transfer in Modular Balanced Networks
title_sort passing the message: representation transfer in modular balanced networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915101/
https://www.ncbi.nlm.nih.gov/pubmed/31920605
http://dx.doi.org/10.3389/fncom.2019.00079
work_keys_str_mv AT zajzonbarna passingthemessagerepresentationtransferinmodularbalancednetworks
AT mahmoudiansepehr passingthemessagerepresentationtransferinmodularbalancednetworks
AT morrisonabigail passingthemessagerepresentationtransferinmodularbalancednetworks
AT duarterenato passingthemessagerepresentationtransferinmodularbalancednetworks