Cargando…
Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor
Development of green, clean, and sustainable processes presents new challenges in today’s science. Production of fuel is no exception. Considering the utilisation of various renewable sources, the synthesis of biodiesel, characterised as more environmentally-friendly then fossil fuel, has drawn sign...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915384/ https://www.ncbi.nlm.nih.gov/pubmed/31717462 http://dx.doi.org/10.3390/mi10110759 |
_version_ | 1783480003425468416 |
---|---|
author | Gojun, Martin Pustahija, Lucija Jurinjak Tušek, Ana Šalić, Anita Valinger, Davor Zelić, Bruno |
author_facet | Gojun, Martin Pustahija, Lucija Jurinjak Tušek, Ana Šalić, Anita Valinger, Davor Zelić, Bruno |
author_sort | Gojun, Martin |
collection | PubMed |
description | Development of green, clean, and sustainable processes presents new challenges in today’s science. Production of fuel is no exception. Considering the utilisation of various renewable sources, the synthesis of biodiesel, characterised as more environmentally-friendly then fossil fuel, has drawn significant attention. Even though the process based on chemical transesterification in a batch reactor still presents the most used method for its production, enzyme catalysed synthesis of biodiesel in a microreactor could be a new approach for going green. In this research, edible sunflower oil and methanol were used as substrates and lipase from Thermomyces lanuginosus (Lipolase L100) was used as catalyst for biodiesel synthesis. Experiments were performed in a polytetrafluoroethylene (PTFE) microreactor with three inlets and in glass microreactors with two and three inlets. For a residence time of 32 min, the fatty acids methyl esters (FAME) yield was 30% higher than the yield obtained for the glass microreactor with three inlets. In comparison, when the reaction was performed in a batch reactor (V = 500 mL), the same FAME yield was achieved after 1.5 h. In order to enhance the productivity of the process, we used proposed reaction kinetics, estimated kinetic parameters, and a mathematical model we developed. After validation using independent experimental data, a proposed model was used for process optimization in order to obtain the highest FAME yield for the shortest residence time. |
format | Online Article Text |
id | pubmed-6915384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69153842019-12-24 Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor Gojun, Martin Pustahija, Lucija Jurinjak Tušek, Ana Šalić, Anita Valinger, Davor Zelić, Bruno Micromachines (Basel) Article Development of green, clean, and sustainable processes presents new challenges in today’s science. Production of fuel is no exception. Considering the utilisation of various renewable sources, the synthesis of biodiesel, characterised as more environmentally-friendly then fossil fuel, has drawn significant attention. Even though the process based on chemical transesterification in a batch reactor still presents the most used method for its production, enzyme catalysed synthesis of biodiesel in a microreactor could be a new approach for going green. In this research, edible sunflower oil and methanol were used as substrates and lipase from Thermomyces lanuginosus (Lipolase L100) was used as catalyst for biodiesel synthesis. Experiments were performed in a polytetrafluoroethylene (PTFE) microreactor with three inlets and in glass microreactors with two and three inlets. For a residence time of 32 min, the fatty acids methyl esters (FAME) yield was 30% higher than the yield obtained for the glass microreactor with three inlets. In comparison, when the reaction was performed in a batch reactor (V = 500 mL), the same FAME yield was achieved after 1.5 h. In order to enhance the productivity of the process, we used proposed reaction kinetics, estimated kinetic parameters, and a mathematical model we developed. After validation using independent experimental data, a proposed model was used for process optimization in order to obtain the highest FAME yield for the shortest residence time. MDPI 2019-11-08 /pmc/articles/PMC6915384/ /pubmed/31717462 http://dx.doi.org/10.3390/mi10110759 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gojun, Martin Pustahija, Lucija Jurinjak Tušek, Ana Šalić, Anita Valinger, Davor Zelić, Bruno Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title | Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title_full | Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title_fullStr | Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title_full_unstemmed | Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title_short | Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor |
title_sort | kinetic parameter estimation and mathematical modelling of lipase catalysed biodiesel synthesis in a microreactor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915384/ https://www.ncbi.nlm.nih.gov/pubmed/31717462 http://dx.doi.org/10.3390/mi10110759 |
work_keys_str_mv | AT gojunmartin kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor AT pustahijalucija kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor AT jurinjaktusekana kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor AT salicanita kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor AT valingerdavor kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor AT zelicbruno kineticparameterestimationandmathematicalmodellingoflipasecatalysedbiodieselsynthesisinamicroreactor |