Cargando…
A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants
Novel 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalysts were fabricated by the solvothermal and in-situ precipitation methods, followed by light reduction treatment. The Ag/AgCl nanoparticles were homogeneously distributed on 3D BiOCOOH microspheres. These obtained catalysts were...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915398/ https://www.ncbi.nlm.nih.gov/pubmed/31689957 http://dx.doi.org/10.3390/nano9111562 |
_version_ | 1783480006702268416 |
---|---|
author | Li, Shijie Xue, Bing Wu, Genying Liu, Yanping Zhang, Huiqiu Ma, Deyun Zuo, Juncheng |
author_facet | Li, Shijie Xue, Bing Wu, Genying Liu, Yanping Zhang, Huiqiu Ma, Deyun Zuo, Juncheng |
author_sort | Li, Shijie |
collection | PubMed |
description | Novel 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalysts were fabricated by the solvothermal and in-situ precipitation methods, followed by light reduction treatment. The Ag/AgCl nanoparticles were homogeneously distributed on 3D BiOCOOH microspheres. These obtained catalysts were characterized by XRD, SEM, TEM, diffuse reflectance spectra (DRS), and photoluminescence (PL). As expected, they exhibited extraordinary photocatalytic capabilities for the elimination of rhodamine B (RhB) and ciprofloxacin (CIP) under simulated sunlight, the results revealed that the Ag/AgCl/BiOCH-3 with 20 wt.% of Ag/AgCl possessed the maximum activity, and the rate constant for the RhB degradation reached up to 0.1353 min(−1), which was about 16.5 or 12.2 times that of bare BiOCOOH or Ag/AgCl. The PL characterization further verified that Ag/AgCl/BiOCOOH heterojunctions were endowed with the effective separation of photogenerated carriers. The excellent photocatalytic ability of Ag/AgCl/BiOCOOH could be credited to the synergistic interactions between Ag/AgCl and BiOCOOH, which not only substantially widened the light absorption, but also evidently hindered the charge recombination. The trapping experiments revealed that the dominant reactive species in RhB removal were h(+), •OH, and •O(2)(−) species. In addition, Ag/AgCl/BiOCOOH was quite stable and easily recyclable after multiple cycles. The above results imply that the 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalyst holds promising prospects in treating industrial wastewater. |
format | Online Article Text |
id | pubmed-6915398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69153982019-12-24 A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants Li, Shijie Xue, Bing Wu, Genying Liu, Yanping Zhang, Huiqiu Ma, Deyun Zuo, Juncheng Nanomaterials (Basel) Article Novel 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalysts were fabricated by the solvothermal and in-situ precipitation methods, followed by light reduction treatment. The Ag/AgCl nanoparticles were homogeneously distributed on 3D BiOCOOH microspheres. These obtained catalysts were characterized by XRD, SEM, TEM, diffuse reflectance spectra (DRS), and photoluminescence (PL). As expected, they exhibited extraordinary photocatalytic capabilities for the elimination of rhodamine B (RhB) and ciprofloxacin (CIP) under simulated sunlight, the results revealed that the Ag/AgCl/BiOCH-3 with 20 wt.% of Ag/AgCl possessed the maximum activity, and the rate constant for the RhB degradation reached up to 0.1353 min(−1), which was about 16.5 or 12.2 times that of bare BiOCOOH or Ag/AgCl. The PL characterization further verified that Ag/AgCl/BiOCOOH heterojunctions were endowed with the effective separation of photogenerated carriers. The excellent photocatalytic ability of Ag/AgCl/BiOCOOH could be credited to the synergistic interactions between Ag/AgCl and BiOCOOH, which not only substantially widened the light absorption, but also evidently hindered the charge recombination. The trapping experiments revealed that the dominant reactive species in RhB removal were h(+), •OH, and •O(2)(−) species. In addition, Ag/AgCl/BiOCOOH was quite stable and easily recyclable after multiple cycles. The above results imply that the 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalyst holds promising prospects in treating industrial wastewater. MDPI 2019-11-04 /pmc/articles/PMC6915398/ /pubmed/31689957 http://dx.doi.org/10.3390/nano9111562 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Shijie Xue, Bing Wu, Genying Liu, Yanping Zhang, Huiqiu Ma, Deyun Zuo, Juncheng A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title | A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title_full | A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title_fullStr | A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title_full_unstemmed | A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title_short | A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants |
title_sort | novel flower-like ag/agcl/biocooh ternary heterojunction photocatalyst: facile construction and its superior photocatalytic performance for the removal of toxic pollutants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915398/ https://www.ncbi.nlm.nih.gov/pubmed/31689957 http://dx.doi.org/10.3390/nano9111562 |
work_keys_str_mv | AT lishijie anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT xuebing anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT wugenying anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT liuyanping anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT zhanghuiqiu anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT madeyun anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT zuojuncheng anovelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT lishijie novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT xuebing novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT wugenying novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT liuyanping novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT zhanghuiqiu novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT madeyun novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants AT zuojuncheng novelflowerlikeagagclbiocoohternaryheterojunctionphotocatalystfacileconstructionanditssuperiorphotocatalyticperformancefortheremovaloftoxicpollutants |