Cargando…
Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates
If piezoelectric micro-devices based on K(0.5)Na(0.5)NbO(3) (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915527/ https://www.ncbi.nlm.nih.gov/pubmed/31718013 http://dx.doi.org/10.3390/nano9111600 |
_version_ | 1783480037059592192 |
---|---|
author | Tkach, Alexander Santos, André Zlotnik, Sebastian Serrazina, Ricardo Okhay, Olena Bdikin, Igor Costa, Maria Elisabete Vilarinho, Paula M. |
author_facet | Tkach, Alexander Santos, André Zlotnik, Sebastian Serrazina, Ricardo Okhay, Olena Bdikin, Igor Costa, Maria Elisabete Vilarinho, Paula M. |
author_sort | Tkach, Alexander |
collection | PubMed |
description | If piezoelectric micro-devices based on K(0.5)Na(0.5)NbO(3) (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures. |
format | Online Article Text |
id | pubmed-6915527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69155272019-12-24 Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates Tkach, Alexander Santos, André Zlotnik, Sebastian Serrazina, Ricardo Okhay, Olena Bdikin, Igor Costa, Maria Elisabete Vilarinho, Paula M. Nanomaterials (Basel) Article If piezoelectric micro-devices based on K(0.5)Na(0.5)NbO(3) (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures. MDPI 2019-11-11 /pmc/articles/PMC6915527/ /pubmed/31718013 http://dx.doi.org/10.3390/nano9111600 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tkach, Alexander Santos, André Zlotnik, Sebastian Serrazina, Ricardo Okhay, Olena Bdikin, Igor Costa, Maria Elisabete Vilarinho, Paula M. Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title | Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title_full | Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title_fullStr | Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title_full_unstemmed | Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title_short | Effect of Solution Conditions on the Properties of Sol–Gel Derived Potassium Sodium Niobate Thin Films on Platinized Sapphire Substrates |
title_sort | effect of solution conditions on the properties of sol–gel derived potassium sodium niobate thin films on platinized sapphire substrates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915527/ https://www.ncbi.nlm.nih.gov/pubmed/31718013 http://dx.doi.org/10.3390/nano9111600 |
work_keys_str_mv | AT tkachalexander effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT santosandre effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT zlotniksebastian effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT serrazinaricardo effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT okhayolena effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT bdikinigor effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT costamariaelisabete effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates AT vilarinhopaulam effectofsolutionconditionsonthepropertiesofsolgelderivedpotassiumsodiumniobatethinfilmsonplatinizedsapphiresubstrates |