Cargando…

Highly Sensitive Temperature Sensing Performance of a Microfiber Fabry-Perot Interferometer with Sealed Micro-Spherical Reflector

A temperature probe has been proposed by inserting a microfiber taper into a silica hollow core fiber with a microsphere end. The sealed air cavity in the microsphere and the inserted microfiber acted as the two reflectors of a Fabry-Perot interferometer, respectively. The contribution of both micro...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jin, Yang, Juntong, Ma, Jinna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915583/
https://www.ncbi.nlm.nih.gov/pubmed/31726706
http://dx.doi.org/10.3390/mi10110773
Descripción
Sumario:A temperature probe has been proposed by inserting a microfiber taper into a silica hollow core fiber with a microsphere end. The sealed air cavity in the microsphere and the inserted microfiber acted as the two reflectors of a Fabry-Perot interferometer, respectively. The contribution of both microfiber diameter and cavity length on the interference spectra was analyzed and discussed in detail. The temperature change was experimentally determined by monitoring the wavelength location of the special resonance dip. By filling the air cavity with poly-dimethylsiloxane (PDMS), a high temperature sensitivity of 3.90 nm/°C was experimentally demonstrated. This temperature probe with the diameter of 150 μm and length of 10 mm will be a promising candidate for exploring the miniature or implantable sensors.