Cargando…

Requirements for Durability Improvement of Conductive Patterns Permeated in Textiles under Cyclic Tensile Deformation

Conductive patterns on textiles are one of the key components for electronic textiles (E-textiles). The patterns with deeper permeation of inks into the textiles show better durability against cyclic tensile deformation. However, other requirements for improving the durability and the behavior of re...

Descripción completa

Detalles Bibliográficos
Autores principales: Koshi, Tomoya, Nomura, Ken-ichi, Yoshida, Manabu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915606/
https://www.ncbi.nlm.nih.gov/pubmed/31731558
http://dx.doi.org/10.3390/mi10110721
Descripción
Sumario:Conductive patterns on textiles are one of the key components for electronic textiles (E-textiles). The patterns with deeper permeation of inks into the textiles show better durability against cyclic tensile deformation. However, other requirements for improving the durability and the behavior of resistance under deformation are still unclear. In this study, the resistance during cyclic tensile deformation was measured with changing conditions, and the resistance variation was analyzed while considering the stress variation. Silver inks were printed on a plain weave, and the pattern width and tensile direction against weft yarns were changed. Measurements confirmed that the resistance increased less with wider pattern widths and when the tensile direction was horizontal to the axis of the weft yarns. Through scanning electron microscopy (SEM) observation, we also confirmed that the growth rate of cracks, at the crossing point of yarns, was changed by the tensile direction. These results indicate that the durability is improved when the electricity path redundancy within the pattern is robust, and the crack growth rate at the yarn crossing points is low. The analysis also confirmed both increasing and decreasing behavior of resistance during stretching in the cyclic tensile deformation, indicating the behavior results from the stress variation of a plain weave.