Cargando…

Mechanical Property Changes in Breast Cancer Cells Induced by Stimulation with Macrophage Secretions in Vitro

The contribution of secretions from tumor-associated macrophage (TAM)-like cells to the stimulation of mechanical property changes in murine breast cancer cells was studied using an in vitro model system. A murine breast cancer cell line (FP10SC2) was stimulated by adding macrophage (J774.2) cultiva...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyonchol, Ishibashi, Kenta, Okada, Tomoko, Nakamura, Chikashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915679/
https://www.ncbi.nlm.nih.gov/pubmed/31671643
http://dx.doi.org/10.3390/mi10110738
Descripción
Sumario:The contribution of secretions from tumor-associated macrophage (TAM)-like cells to the stimulation of mechanical property changes in murine breast cancer cells was studied using an in vitro model system. A murine breast cancer cell line (FP10SC2) was stimulated by adding macrophage (J774.2) cultivation medium containing stimulation molecules secreted from the macrophages, and changes in mechanical properties were compared before and after stimulation. As a result, cell elasticity decreased, degradation ability of the extracellular matrix increased, and the expression of plakoglobin was upregulated. These results indicate that cancer cell malignancy is upregulated by this stimulation. Moreover, changes in intercellular adhesion strengths between pairs of cancer cells were measured before and after stimulation using atomic force microscopy (AFM). The maximum force required to separate cells was increased by stimulation with the secreted factors. These results indicate the possibility that TAMs cause changes in the mechanical properties of cancer cells in tumor microenvironments, and in vitro measurements of mechanical property changes in cancer cells will be useful to study interactions between cells in tumor microenvironments.