Cargando…
Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot
Fast advancement of machine learning methods and constant growth of the areas of application open up new horizons for large data management and processing. Among the various types of data available for analysis, the Fourier Transform InfraRed (FTIR) spectroscopy spectra are very challenging datasets...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915699/ https://www.ncbi.nlm.nih.gov/pubmed/31844151 http://dx.doi.org/10.1038/s41598-019-55543-7 |
_version_ | 1783480077148749824 |
---|---|
author | Cadet, Xavier F. Lo-Thong, Ophélie Bureau, Sylvie Dehak, Reda Bessafi, Miloud |
author_facet | Cadet, Xavier F. Lo-Thong, Ophélie Bureau, Sylvie Dehak, Reda Bessafi, Miloud |
author_sort | Cadet, Xavier F. |
collection | PubMed |
description | Fast advancement of machine learning methods and constant growth of the areas of application open up new horizons for large data management and processing. Among the various types of data available for analysis, the Fourier Transform InfraRed (FTIR) spectroscopy spectra are very challenging datasets to consider. In this study, machine learning is used to analyze and predict a rheological parameter: firmness. Various statistics have been gathered including both chemistry (such as ethylene, titrable acidity or sugars) and spectra values to visualize and analyze a dataset of 731 biological samples. Two-dimensional (2D) and three-dimensional (3D) principal component analyses (PCA) are used to evaluate their ability to discriminate for one parameter: firmness. Partial least squared regression (PLSR) modeling has been carried out to predict the rheological parameter using either sixteen physicochemical parameters or only the infrared spectra. We show that (i) the spectra alone allows good discrimination of the samples based on rheology, (ii) 3D-PCA allows comprehensive and informative visualization of the data, and (iii) that the rheological parameters are predicted accurately using a regression method such as PLSR; instead of using chemical parameters which are laborious to obtain, Mid-FTIR spectra gathering all physicochemical information could be used for efficient prediction of firmness. As a conclusion, rheological and chemical parameters allow good discrimination of the samples according to their firmness. However, using only the IR spectra leads to better results. A good predictive model was built for the prediction of the firmness of the fruit, and we reached a coefficient of determination R(2) value of 0.90. This method outperforms a model based on physicochemical descriptors only. Such an approach could be very helpful to technologists and farmers. |
format | Online Article Text |
id | pubmed-6915699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69156992019-12-18 Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot Cadet, Xavier F. Lo-Thong, Ophélie Bureau, Sylvie Dehak, Reda Bessafi, Miloud Sci Rep Article Fast advancement of machine learning methods and constant growth of the areas of application open up new horizons for large data management and processing. Among the various types of data available for analysis, the Fourier Transform InfraRed (FTIR) spectroscopy spectra are very challenging datasets to consider. In this study, machine learning is used to analyze and predict a rheological parameter: firmness. Various statistics have been gathered including both chemistry (such as ethylene, titrable acidity or sugars) and spectra values to visualize and analyze a dataset of 731 biological samples. Two-dimensional (2D) and three-dimensional (3D) principal component analyses (PCA) are used to evaluate their ability to discriminate for one parameter: firmness. Partial least squared regression (PLSR) modeling has been carried out to predict the rheological parameter using either sixteen physicochemical parameters or only the infrared spectra. We show that (i) the spectra alone allows good discrimination of the samples based on rheology, (ii) 3D-PCA allows comprehensive and informative visualization of the data, and (iii) that the rheological parameters are predicted accurately using a regression method such as PLSR; instead of using chemical parameters which are laborious to obtain, Mid-FTIR spectra gathering all physicochemical information could be used for efficient prediction of firmness. As a conclusion, rheological and chemical parameters allow good discrimination of the samples according to their firmness. However, using only the IR spectra leads to better results. A good predictive model was built for the prediction of the firmness of the fruit, and we reached a coefficient of determination R(2) value of 0.90. This method outperforms a model based on physicochemical descriptors only. Such an approach could be very helpful to technologists and farmers. Nature Publishing Group UK 2019-12-16 /pmc/articles/PMC6915699/ /pubmed/31844151 http://dx.doi.org/10.1038/s41598-019-55543-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Cadet, Xavier F. Lo-Thong, Ophélie Bureau, Sylvie Dehak, Reda Bessafi, Miloud Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title | Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title_full | Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title_fullStr | Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title_full_unstemmed | Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title_short | Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot |
title_sort | use of machine learning and infrared spectra for rheological characterization and application to the apricot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915699/ https://www.ncbi.nlm.nih.gov/pubmed/31844151 http://dx.doi.org/10.1038/s41598-019-55543-7 |
work_keys_str_mv | AT cadetxavierf useofmachinelearningandinfraredspectraforrheologicalcharacterizationandapplicationtotheapricot AT lothongophelie useofmachinelearningandinfraredspectraforrheologicalcharacterizationandapplicationtotheapricot AT bureausylvie useofmachinelearningandinfraredspectraforrheologicalcharacterizationandapplicationtotheapricot AT dehakreda useofmachinelearningandinfraredspectraforrheologicalcharacterizationandapplicationtotheapricot AT bessafimiloud useofmachinelearningandinfraredspectraforrheologicalcharacterizationandapplicationtotheapricot |