Cargando…
Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot
Fast advancement of machine learning methods and constant growth of the areas of application open up new horizons for large data management and processing. Among the various types of data available for analysis, the Fourier Transform InfraRed (FTIR) spectroscopy spectra are very challenging datasets...
Autores principales: | Cadet, Xavier F., Lo-Thong, Ophélie, Bureau, Sylvie, Dehak, Reda, Bessafi, Miloud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915699/ https://www.ncbi.nlm.nih.gov/pubmed/31844151 http://dx.doi.org/10.1038/s41598-019-55543-7 |
Ejemplares similares
-
Non-Linear Dynamics Analysis of Protein Sequences. Application to CYP450
por: Cadet, Xavier F., et al.
Publicado: (2019) -
Non-linearity of Metabolic Pathways Critically Influences the Choice of Machine Learning Model
por: Lo-Thong-Viramoutou, Ophélie, et al.
Publicado: (2022) -
Machine learning molecular dynamics for the simulation of infrared spectra
por: Gastegger, Michael, et al.
Publicado: (2017) -
Adoption and Optimization of Genomic Selection To Sustain Breeding for Apricot Fruit Quality
por: Nsibi, Mariem, et al.
Publicado: (2020) -
Quantitative
Structural Description of Zeolites by
Machine Learning Analysis of Infrared Spectra
por: Skorynina, Alina A., et al.
Publicado: (2023)