Cargando…

Anomalies in uncinate fasciculus development and social defects in preschoolers with autism spectrum disorder

BACKGROUND: Individuals with autism spectrum disorder (ASD) have social interaction deficits and difficulties in emotional regulation. The neural substrates for these socio-affective deficits are not yet clear, but one potential candidate is maldevelopment of the uncinate fasciculus (UF), a white ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yun, Zhou, Zhengbing, Chang, Chen, Qian, Lu, Li, Chunyan, Xiao, Ting, Xiao, Xiang, Chu, Kangkang, Fang, Hui, Ke, Xiaoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916076/
https://www.ncbi.nlm.nih.gov/pubmed/31842898
http://dx.doi.org/10.1186/s12888-019-2391-1
Descripción
Sumario:BACKGROUND: Individuals with autism spectrum disorder (ASD) have social interaction deficits and difficulties in emotional regulation. The neural substrates for these socio-affective deficits are not yet clear, but one potential candidate is maldevelopment of the uncinate fasciculus (UF), a white matter tract thought to be involved in socio-affective processing. However, the developmental trajectory of the UF in young children with social interaction deficits has not been examined. The present study was designed to describe the developmental growth trajectory of the UF and the relationships between UF development and social deficits in ASD. METHODS: Eigenvalues of the UF were measured by diffusion tensor imaging (DTI)-based tractography in 37 children with ASD and 27 matched 2–3-year-old subjects with developmental delay (DD) at baseline (time 1) and at 2-year follow-up (time 2). Growth rates of the UF were compared between groups and associations with social deficit scores according to the Autism Diagnostic Interview-Revised (ADI-R) analyzed by Pearson’s correlations. RESULTS: At time 1, axial diffusivity (AD) of the left UF was significantly larger in the ASD group than the DD group. At time 2, left UF fractional anisotropy (FA) was significantly higher and radial diffusivity (RD) significantly lower in the ASD group than the DD group. The rate of UF growth during this 2-year interval was faster in children with ASD than DD. Significant negative correlations were found between the rise in ADI-R social deficit measures and both right UF RD and left UF mean diffusivity (MD). CONCLUSIONS: Young children with ASD demonstrate UF overgrowth during the 2-year development period between 2 and 3 and 4–5 years of age, and this white matter abnormality is directly associated with the progression of social deficits. TRIAL REGISTRATION: World Health Organization class I registered international clinical trial platform, ChiCTR-ROC-17012877.