Cargando…
An accurate interactive segmentation and volume calculation of orbital soft tissue for orbital reconstruction after enucleation
BACKGROUND: Accurate measurement and reconstruction of orbital soft tissue is important to diagnosis and treatment of orbital diseases. This study applied an interactive graph cut method to orbital soft tissue precise segmentation and calculation in computerized tomography (CT) images, and to estima...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916112/ https://www.ncbi.nlm.nih.gov/pubmed/31842802 http://dx.doi.org/10.1186/s12886-019-1260-5 |
Sumario: | BACKGROUND: Accurate measurement and reconstruction of orbital soft tissue is important to diagnosis and treatment of orbital diseases. This study applied an interactive graph cut method to orbital soft tissue precise segmentation and calculation in computerized tomography (CT) images, and to estimate its application in orbital reconstruction. METHODS: The interactive graph cut method was introduced to segment extraocular muscle and intraorbital fat in CT images. Intra- and inter-observer variability of tissue volume measured by graph cut segmentation was validated. Accuracy and reliability of the method was accessed by comparing with manual delineation and commercial medical image software. Intraorbital structure of 10 patients after enucleation surgery was reconstructed based on graph cut segmentation and soft tissue volume were compared within two different surgical techniques. RESULTS: Both muscle and fat tissue segmentation results of graph cut method showed good consistency with ground truth in phantom data. There were no significant differences in muscle calculations between observers or segmental methods (p > 0.05). Graph cut results of fat tissue had coincidental variable trend with ground truth which could identify 0.1cm(3) variation. The mean performance time of graph cut segmentation was significantly shorter than manual delineation and commercial software (p < 0.001). Jaccard similarity and Dice coefficient of graph cut method were 0.767 ± 0.045 and 0.836 ± 0.032 for human normal extraocular muscle segmentation. The measurements of fat tissue were significantly better in graph cut than those in commercial software (p < 0.05). Orbital soft tissue volume was decreased in post-enucleation orbit than that in normal orbit (p < 0.05). CONCLUSION: The graph cut method was validated to have good accuracy, reliability and efficiency in orbit soft tissue segmentation. It could discern minor volume changes of soft tissue. The interactive segmenting technique would be a valuable tool for dynamic analysis and prediction of therapeutic effect and orbital reconstruction. |
---|