Cargando…
Inferring Pareto-optimal reconciliations across multiple event costs under the duplication-loss-coalescence model
BACKGROUND: Reconciliation methods are widely used to explain incongruence between a gene tree and species tree. However, the common approach of inferring maximum parsimony reconciliations (MPRs) relies on user-defined costs for each type of event, which can be difficult to estimate. Prior work has...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916210/ https://www.ncbi.nlm.nih.gov/pubmed/31842732 http://dx.doi.org/10.1186/s12859-019-3206-6 |
Sumario: | BACKGROUND: Reconciliation methods are widely used to explain incongruence between a gene tree and species tree. However, the common approach of inferring maximum parsimony reconciliations (MPRs) relies on user-defined costs for each type of event, which can be difficult to estimate. Prior work has explored the relationship between event costs and maximum parsimony reconciliations in the duplication-loss and duplication-transfer-loss models, but no studies have addressed this relationship in the more complicated duplication-loss-coalescence model. RESULTS: We provide a fixed-parameter tractable algorithm for computing Pareto-optimal reconciliations and recording all events that arise in those reconciliations, along with their frequencies. We apply this method to a case study of 16 fungi to systematically characterize the complexity of MPR space across event costs and identify events supported across this space. CONCLUSION: This work provides a new framework for studying the relationship between event costs and reconciliations that incorporates both macro-evolutionary events and population effects and is thus broadly applicable across eukaryotic species. |
---|