Cargando…
Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production
Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High‐cell‐density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916281/ https://www.ncbi.nlm.nih.gov/pubmed/31612991 http://dx.doi.org/10.1002/bit.27190 |
_version_ | 1783480199700021248 |
---|---|
author | Jin, Hu Zhang, Hu Zhou, Zhiwei Li, Kunpeng Hou, Guoli Xu, Quan Chuai, Wenhua Zhang, Chengwu Han, Danxiang Hu, Qiang |
author_facet | Jin, Hu Zhang, Hu Zhou, Zhiwei Li, Kunpeng Hou, Guoli Xu, Quan Chuai, Wenhua Zhang, Chengwu Han, Danxiang Hu, Qiang |
author_sort | Jin, Hu |
collection | PubMed |
description | Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High‐cell‐density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and employing a sophisticated substrate feed control strategy, ultrahigh‐cell‐density of 286 and 283.5 g/L was achieved for the unicellular alga Scenedesmus acuminatus grown in 7.5‐L bench‐scale and 1,000‐L pilot‐scale fermenters, respectively. The outdoor scale‐up experiments indicated that heterotrophically grown S. acuminatus cells are more productive in terms of both biomass and lipid accumulation when they are inoculated in photobioreactors for lipid production as compared to the cells originally grown under photoautotrophic conditions. Technoeconomic analysis based on the pilot‐scale data indicated that the cost of heterotrophic cultivation of microalgae for biomass production is comparable with that of the open‐pond system and much lower than that of tubular PBR, if the biomass yield was higher than 200 g/L. This study demonstrated the economic viability of heterotrophic cultivation on large‐scale microalgal inocula production, but ultrahigh‐productivity fermentation is a prerequisite. Moreover, the advantages of the combined heterotrophic and photoautotrophic cultivation of microalgae for biofuels production were also verified in the pilot‐scale. |
format | Online Article Text |
id | pubmed-6916281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69162812019-12-17 Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production Jin, Hu Zhang, Hu Zhou, Zhiwei Li, Kunpeng Hou, Guoli Xu, Quan Chuai, Wenhua Zhang, Chengwu Han, Danxiang Hu, Qiang Biotechnol Bioeng ARTICLES Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High‐cell‐density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and employing a sophisticated substrate feed control strategy, ultrahigh‐cell‐density of 286 and 283.5 g/L was achieved for the unicellular alga Scenedesmus acuminatus grown in 7.5‐L bench‐scale and 1,000‐L pilot‐scale fermenters, respectively. The outdoor scale‐up experiments indicated that heterotrophically grown S. acuminatus cells are more productive in terms of both biomass and lipid accumulation when they are inoculated in photobioreactors for lipid production as compared to the cells originally grown under photoautotrophic conditions. Technoeconomic analysis based on the pilot‐scale data indicated that the cost of heterotrophic cultivation of microalgae for biomass production is comparable with that of the open‐pond system and much lower than that of tubular PBR, if the biomass yield was higher than 200 g/L. This study demonstrated the economic viability of heterotrophic cultivation on large‐scale microalgal inocula production, but ultrahigh‐productivity fermentation is a prerequisite. Moreover, the advantages of the combined heterotrophic and photoautotrophic cultivation of microalgae for biofuels production were also verified in the pilot‐scale. John Wiley and Sons Inc. 2019-11-12 2020-01 /pmc/articles/PMC6916281/ /pubmed/31612991 http://dx.doi.org/10.1002/bit.27190 Text en © 2019 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ARTICLES Jin, Hu Zhang, Hu Zhou, Zhiwei Li, Kunpeng Hou, Guoli Xu, Quan Chuai, Wenhua Zhang, Chengwu Han, Danxiang Hu, Qiang Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title | Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title_full | Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title_fullStr | Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title_full_unstemmed | Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title_short | Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
title_sort | ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green microalga scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916281/ https://www.ncbi.nlm.nih.gov/pubmed/31612991 http://dx.doi.org/10.1002/bit.27190 |
work_keys_str_mv | AT jinhu ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT zhanghu ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT zhouzhiwei ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT likunpeng ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT houguoli ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT xuquan ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT chuaiwenhua ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT zhangchengwu ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT handanxiang ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction AT huqiang ultrahighcelldensityheterotrophiccultivationoftheunicellulargreenmicroalgascenedesmusacuminatusandapplicationofthecellstophotoautotrophiccultureenhancebiomassandlipidproduction |