Cargando…
Application of Machine Learning Methods to Ambulatory Circadian Monitoring (ACM) for Discriminating Sleep and Circadian Disorders
The present study proposes a classification model for the differential diagnosis of primary insomnia (PI) and delayed sleep phase disorder (DSPD), applying machine learning methods to circadian parameters obtained from ambulatory circadian monitoring (ACM). Nineteen healthy controls and 242 patients...
Autores principales: | Rodriguez-Morilla, Beatriz, Estivill, Eduard, Estivill-Domènech, Carla, Albares, Javier, Segarra, Francisco, Correa, Angel, Campos, Manuel, Rol, Maria Angeles, Madrid, Juan Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916421/ https://www.ncbi.nlm.nih.gov/pubmed/31920488 http://dx.doi.org/10.3389/fnins.2019.01318 |
Ejemplares similares
-
Assessing Chronotypes by Ambulatory Circadian Monitoring
por: Martinez-Nicolas, Antonio, et al.
Publicado: (2019) -
Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock
por: Almaida-Pagan, Pedro F., et al.
Publicado: (2022) -
Ambulatory circadian monitoring in sleep disordered breathing patients and CPAP treatment
por: Martinez-Nicolas, Antonio, et al.
Publicado: (2021) -
Determining Light Intensity, Timing and Type of Visible and Circadian Light From an Ambulatory Circadian Monitoring Device
por: Arguelles-Prieto, Raquel, et al.
Publicado: (2019) -
Melatonin alleviates circadian system disruption induced by chronic shifts of the light‐dark cycle in Octodon degus
por: Bano‐Otalora, Beatriz, et al.
Publicado: (2019)