Cargando…

The various shades of ER‐phagy

Endoplasmic reticulum (ER) is a large and dynamic cellular organelle. ER morphology consists of sheets, tubules, matrixes, and contact sites shared with other membranous organelles. The capacity of the ER to fulfill its numerous biological functions depends on its continuous remodeling and the quali...

Descripción completa

Detalles Bibliográficos
Autores principales: Stolz, Alexandra, Grumati, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916603/
https://www.ncbi.nlm.nih.gov/pubmed/31386802
http://dx.doi.org/10.1111/febs.15031
Descripción
Sumario:Endoplasmic reticulum (ER) is a large and dynamic cellular organelle. ER morphology consists of sheets, tubules, matrixes, and contact sites shared with other membranous organelles. The capacity of the ER to fulfill its numerous biological functions depends on its continuous remodeling and the quality control of its proteome. Selective turnover of the ER by autophagy, termed ER‐phagy, plays an important role in maintaining ER homeostasis. ER network integrity and turnover rely on specific ER‐phagy receptors, which influence and coordinate alterations in ER morphology and the degradation of ER contents and membranes via the lysosome, by interacting with the LC3/GABARAP family. In this commentary, we discuss general principles and identify the major players in this recently characterized form of selective autophagy, while simultaneously highlighting open questions in the field.