Cargando…
Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions,...
Autores principales: | Rifaioglu, Ahmet Sureyya, Atas, Heval, Martin, Maria Jesus, Cetin-Atalay, Rengul, Atalay, Volkan, Doğan, Tunca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917215/ https://www.ncbi.nlm.nih.gov/pubmed/30084866 http://dx.doi.org/10.1093/bib/bby061 |
Ejemplares similares
-
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks
por: Sureyya Rifaioglu, Ahmet, et al.
Publicado: (2019) -
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
por: Dalkiran, Alperen, et al.
Publicado: (2018) -
DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2020) -
CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations
por: Doğan, Tunca, et al.
Publicado: (2021) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023)