Cargando…

Machine Learning and Feature Selection Methods for Disease Classification With Application to Lung Cancer Screening Image Data

As awareness of the habits and risks associated with lung cancer has increased, so has the interest in promoting and improving upon lung cancer screening procedures. Recent research demonstrates the benefits of lung cancer screening; the National Lung Screening Trial (NLST) found as its primary resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Delzell, Darcie A. P., Magnuson, Sara, Peter, Tabitha, Smith, Michelle, Smith, Brian J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917601/
https://www.ncbi.nlm.nih.gov/pubmed/31921650
http://dx.doi.org/10.3389/fonc.2019.01393
Descripción
Sumario:As awareness of the habits and risks associated with lung cancer has increased, so has the interest in promoting and improving upon lung cancer screening procedures. Recent research demonstrates the benefits of lung cancer screening; the National Lung Screening Trial (NLST) found as its primary result that preventative screening significantly decreases the death rate for patients battling lung cancer. However, it was also noted that the false positive rate was very high (>94%).In this work, we investigated the ability of various machine learning classifiers to accurately predict lung cancer nodule status while also considering the associated false positive rate. We utilized 416 quantitative imaging biomarkers taken from CT scans of lung nodules from 200 patients, where the nodules had been verified as cancerous or benign. These imaging biomarkers were created from both nodule and parenchymal tissue. A variety of linear, nonlinear, and ensemble predictive classifying models, along with several feature selection methods, were used to classify the binary outcome of malignant or benign status. Elastic net and support vector machine, combined with either a linear combination or correlation feature selection method, were some of the best-performing classifiers (average cross-validation AUC near 0.72 for these models), while random forest and bagged trees were the worst performing classifiers (AUC near 0.60). For the best performing models, the false positive rate was near 30%, notably lower than that reported in the NLST.The use of radiomic biomarkers with machine learning methods are a promising diagnostic tool for tumor classification. The have the potential to provide good classification and simultaneously reduce the false positive rate.