Cargando…
Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice
International initiatives such as the Molecular Taxonomy of Breast Cancer International Consortium are collecting multiple data sets at different genome-scales with the aim to identify novel cancer bio-markers and predict patient survival. To analyze such data, several machine learning, bioinformati...
Autores principales: | Simidjievski, Nikola, Bodnar, Cristian, Tariq, Ifrah, Scherer, Paul, Andres Terre, Helena, Shams, Zohreh, Jamnik, Mateja, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917668/ https://www.ncbi.nlm.nih.gov/pubmed/31921281 http://dx.doi.org/10.3389/fgene.2019.01205 |
Ejemplares similares
-
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
por: Scherer, Paul, et al.
Publicado: (2021) -
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
por: Buterez, David, et al.
Publicado: (2021) -
Interpretable Feature Generation in ECG Using a Variational Autoencoder
por: Kuznetsov, V. V., et al.
Publicado: (2021) -
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
por: Zhang, Yue, et al.
Publicado: (2022) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022)