Cargando…
A Case study on the utility of predictive toxicology tools in alternatives assessments for hazardous chemicals in children’s consumer products
Children’s consumer products represent an important exposure source for many toxicants. Chemicals of high concern, as designated by the Washington State Child Safe Product Act include phthalates, Bisphenol A (BPA) and parabens, among others. As regulation and reporting requirements increase, so has...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917906/ https://www.ncbi.nlm.nih.gov/pubmed/31501452 http://dx.doi.org/10.1038/s41370-019-0165-y |
Sumario: | Children’s consumer products represent an important exposure source for many toxicants. Chemicals of high concern, as designated by the Washington State Child Safe Product Act include phthalates, Bisphenol A (BPA) and parabens, among others. As regulation and reporting requirements increase, so has demand for safer alternatives. This project examines how predictive toxicology and exposure comparison tools can fill gaps in alternatives assessments for hazardous chemicals found in children’s products. Phthalates, parabens, BPA and their alternatives were assessed for endocrine disruption and reproductive toxicity using authoritative lists and US Environmental Protection Agency’s (EPA) predictive toxicology and exposure comparison tools. Resources included the European Chemical Agency’s Endocrine Disruptor Substances of Concern database, Global Harmonization System and Classification of Labeling Chemicals, Quantitative Structural Activity Relationships from the Toxicity Estimation Software Tool, the Toxicological Prioritization Index (ToxPi) score calculated from the ToxCast Database, and No Observable Adverse Effects Levels (NOAELs)/Highest No Effects Levels (HNEL) from animal studies found in the CompTox Chemistry Dashboard. Exposure was assessed using ExpoCast predictions. Though alternatives were rarely included in authoritative lists, predictive toxicology tools suggested that BPA alternatives may not be safer but paraben and phthalate alternatives may be safer. All four paraben and no bisphenol or phthalate alternatives were listed on EPA’s Safer Chemical Ingredients List. Overall, we found that predictive toxicology tools help fill gaps for alternatives assessments when existing classifications are incomplete. |
---|