Cargando…

Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications

The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yifan, Zhao, Shishun, Wang, Lei, Zhou, Ziyao, Liu, Junxue, Min, Tai, Peng, Bin, Hu, Zhongqiang, Jin, Shengye, Liu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918118/
https://www.ncbi.nlm.nih.gov/pubmed/31871867
http://dx.doi.org/10.1002/advs.201901994
_version_ 1783480516289232896
author Zhao, Yifan
Zhao, Shishun
Wang, Lei
Zhou, Ziyao
Liu, Junxue
Min, Tai
Peng, Bin
Hu, Zhongqiang
Jin, Shengye
Liu, Ming
author_facet Zhao, Yifan
Zhao, Shishun
Wang, Lei
Zhou, Ziyao
Liu, Junxue
Min, Tai
Peng, Bin
Hu, Zhongqiang
Jin, Shengye
Liu, Ming
author_sort Zhao, Yifan
collection PubMed
description The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tricoupled photovoltaic/magnetic thin film heterojunction, where magnetism can be manipulated directly by sunlight via interfacial effect, is proposed. The magnetic anisotropy is reduced evidenced by the out‐of‐plane ferromagnetic resonance (FMR) field change of 640.26 Oe under 150 mW cm(−2) illumination via in situ electron spin resonance (ESR) method. The transient absorption analysis and the first‐principles calculation reveal that the photovoltaic electrons doping in the cobalt film alter the band filling of this ferromagnetic film. The findings provide a new path of electron doping control magnetism and demonstrate an optical‐magnetic dual controllable logical switch with limited energy supply, which may further transform the landscape of spintronics research.
format Online
Article
Text
id pubmed-6918118
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-69181182019-12-23 Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications Zhao, Yifan Zhao, Shishun Wang, Lei Zhou, Ziyao Liu, Junxue Min, Tai Peng, Bin Hu, Zhongqiang Jin, Shengye Liu, Ming Adv Sci (Weinh) Full Papers The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tricoupled photovoltaic/magnetic thin film heterojunction, where magnetism can be manipulated directly by sunlight via interfacial effect, is proposed. The magnetic anisotropy is reduced evidenced by the out‐of‐plane ferromagnetic resonance (FMR) field change of 640.26 Oe under 150 mW cm(−2) illumination via in situ electron spin resonance (ESR) method. The transient absorption analysis and the first‐principles calculation reveal that the photovoltaic electrons doping in the cobalt film alter the band filling of this ferromagnetic film. The findings provide a new path of electron doping control magnetism and demonstrate an optical‐magnetic dual controllable logical switch with limited energy supply, which may further transform the landscape of spintronics research. John Wiley and Sons Inc. 2019-10-26 /pmc/articles/PMC6918118/ /pubmed/31871867 http://dx.doi.org/10.1002/advs.201901994 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Zhao, Yifan
Zhao, Shishun
Wang, Lei
Zhou, Ziyao
Liu, Junxue
Min, Tai
Peng, Bin
Hu, Zhongqiang
Jin, Shengye
Liu, Ming
Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title_full Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title_fullStr Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title_full_unstemmed Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title_short Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
title_sort sunlight control of interfacial magnetism for solar driven spintronic applications
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918118/
https://www.ncbi.nlm.nih.gov/pubmed/31871867
http://dx.doi.org/10.1002/advs.201901994
work_keys_str_mv AT zhaoyifan sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT zhaoshishun sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT wanglei sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT zhouziyao sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT liujunxue sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT mintai sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT pengbin sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT huzhongqiang sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT jinshengye sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications
AT liuming sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications