Cargando…
Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications
The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tri...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918118/ https://www.ncbi.nlm.nih.gov/pubmed/31871867 http://dx.doi.org/10.1002/advs.201901994 |
_version_ | 1783480516289232896 |
---|---|
author | Zhao, Yifan Zhao, Shishun Wang, Lei Zhou, Ziyao Liu, Junxue Min, Tai Peng, Bin Hu, Zhongqiang Jin, Shengye Liu, Ming |
author_facet | Zhao, Yifan Zhao, Shishun Wang, Lei Zhou, Ziyao Liu, Junxue Min, Tai Peng, Bin Hu, Zhongqiang Jin, Shengye Liu, Ming |
author_sort | Zhao, Yifan |
collection | PubMed |
description | The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tricoupled photovoltaic/magnetic thin film heterojunction, where magnetism can be manipulated directly by sunlight via interfacial effect, is proposed. The magnetic anisotropy is reduced evidenced by the out‐of‐plane ferromagnetic resonance (FMR) field change of 640.26 Oe under 150 mW cm(−2) illumination via in situ electron spin resonance (ESR) method. The transient absorption analysis and the first‐principles calculation reveal that the photovoltaic electrons doping in the cobalt film alter the band filling of this ferromagnetic film. The findings provide a new path of electron doping control magnetism and demonstrate an optical‐magnetic dual controllable logical switch with limited energy supply, which may further transform the landscape of spintronics research. |
format | Online Article Text |
id | pubmed-6918118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69181182019-12-23 Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications Zhao, Yifan Zhao, Shishun Wang, Lei Zhou, Ziyao Liu, Junxue Min, Tai Peng, Bin Hu, Zhongqiang Jin, Shengye Liu, Ming Adv Sci (Weinh) Full Papers The inexorable trend of next generation spintronics is to develop smaller, lighter, faster, and more energy efficient devices. Ultimately, spintronics driven by free energy, for example, solar power, is imperative. Here, a prototype photovoltaic spintronic device with an optical‐magneto‐electric tricoupled photovoltaic/magnetic thin film heterojunction, where magnetism can be manipulated directly by sunlight via interfacial effect, is proposed. The magnetic anisotropy is reduced evidenced by the out‐of‐plane ferromagnetic resonance (FMR) field change of 640.26 Oe under 150 mW cm(−2) illumination via in situ electron spin resonance (ESR) method. The transient absorption analysis and the first‐principles calculation reveal that the photovoltaic electrons doping in the cobalt film alter the band filling of this ferromagnetic film. The findings provide a new path of electron doping control magnetism and demonstrate an optical‐magnetic dual controllable logical switch with limited energy supply, which may further transform the landscape of spintronics research. John Wiley and Sons Inc. 2019-10-26 /pmc/articles/PMC6918118/ /pubmed/31871867 http://dx.doi.org/10.1002/advs.201901994 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Zhao, Yifan Zhao, Shishun Wang, Lei Zhou, Ziyao Liu, Junxue Min, Tai Peng, Bin Hu, Zhongqiang Jin, Shengye Liu, Ming Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title | Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title_full | Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title_fullStr | Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title_full_unstemmed | Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title_short | Sunlight Control of Interfacial Magnetism for Solar Driven Spintronic Applications |
title_sort | sunlight control of interfacial magnetism for solar driven spintronic applications |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918118/ https://www.ncbi.nlm.nih.gov/pubmed/31871867 http://dx.doi.org/10.1002/advs.201901994 |
work_keys_str_mv | AT zhaoyifan sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT zhaoshishun sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT wanglei sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT zhouziyao sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT liujunxue sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT mintai sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT pengbin sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT huzhongqiang sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT jinshengye sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications AT liuming sunlightcontrolofinterfacialmagnetismforsolardrivenspintronicapplications |