Cargando…
Characterization of Cover Crop Rooting Types from Integration of Rhizobox Imaging and Root Atlas Information
Plant root systems are essential for sustainable agriculture, conveying resource-efficient genotypes and species with benefits to soil ecosystem functions. Targeted selection of species/genotypes depends on available root system information. Currently there is no standardized approach for comprehens...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918168/ https://www.ncbi.nlm.nih.gov/pubmed/31744188 http://dx.doi.org/10.3390/plants8110514 |
Sumario: | Plant root systems are essential for sustainable agriculture, conveying resource-efficient genotypes and species with benefits to soil ecosystem functions. Targeted selection of species/genotypes depends on available root system information. Currently there is no standardized approach for comprehensive root system characterization, suggesting the need for data integration across methods and sources. Here, we combine field measured root descriptors from the classical Root Atlas series with traits from controlled-environment root imaging for 10 cover crop species to (i) detect descriptors scaling between distant experimental methods, (ii) provide traits for species classification, and (iii) discuss implications for cover crop ecosystem functions. Results revealed relation of single axes measures from root imaging (convex hull, primary-lateral length ratio) to Root Atlas field descriptors (depth, branching order). Using composite root variables (principal components) for branching, morphology, and assimilate investment traits, cover crops were classified into species with (i) topsoil-allocated large diameter rooting type, (ii) low-branched primary/shoot-born axes-dominated rooting type, and (iii) highly branched dense rooting type, with classification trait-dependent distinction according to depth distribution. Data integration facilitated identification of root classification variables to derive root-related cover crop distinction, indicating their agro-ecological functions. |
---|