Cargando…
The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS
Membranes based on sulfonated synditoactic polystyrene (s-sPS) were thoroughly characterized by contrast variation small-angle neutron scattering (SANS) over a wide Q-range in dry and hydrated states. Following special sulfonation and treatment procedures, s-sPS is an attractive material for fuel ce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918273/ https://www.ncbi.nlm.nih.gov/pubmed/31652905 http://dx.doi.org/10.3390/membranes9110136 |
_version_ | 1783480553054404608 |
---|---|
author | Schiavone, Maria-Maddalena Iwase, Hiroki Takata, Shin-ichi Radulescu, Aurel |
author_facet | Schiavone, Maria-Maddalena Iwase, Hiroki Takata, Shin-ichi Radulescu, Aurel |
author_sort | Schiavone, Maria-Maddalena |
collection | PubMed |
description | Membranes based on sulfonated synditoactic polystyrene (s-sPS) were thoroughly characterized by contrast variation small-angle neutron scattering (SANS) over a wide Q-range in dry and hydrated states. Following special sulfonation and treatment procedures, s-sPS is an attractive material for fuel cells and energy storage applications. The film samples were prepared by solid-state sulfonation, resulting in uniform sulfonation of only the amorphous phase while preserving the crystallinity of the membrane. Fullerenes, which improve the resistance to oxidation decomposition, were incorporated in the membranes. The fullerenes seem to be chiefly located in the amorphous regions of the samples, and do not influence the formation and evolution of the morphologies in the polymer films, as no significant differences were observed in the SANS patterns compared to the fullerenes-free s-sPS membranes, which were investigated in a previous study. The use of uniaxially deformed film samples, and neutron contrast variation allowed for the identification and characterization of different structural levels with sizes between nm and μm, which form and evolve in both the dry and hydrated states. The scattering length density of the crystalline regions was varied using the guest exchange procedure between different toluene isotopologues incorporated into the sPS lattice, while the variation of the scattering properties of the hydrated amorphous regions was achieved using different H(2)O/D(2)O mixtures. Due to the deformation of the films, the scattering characteristics of different structures can be distinguished on specific detection sectors and at different detection distances after the sample, depending on their size and orientation. |
format | Online Article Text |
id | pubmed-6918273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69182732019-12-24 The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS Schiavone, Maria-Maddalena Iwase, Hiroki Takata, Shin-ichi Radulescu, Aurel Membranes (Basel) Article Membranes based on sulfonated synditoactic polystyrene (s-sPS) were thoroughly characterized by contrast variation small-angle neutron scattering (SANS) over a wide Q-range in dry and hydrated states. Following special sulfonation and treatment procedures, s-sPS is an attractive material for fuel cells and energy storage applications. The film samples were prepared by solid-state sulfonation, resulting in uniform sulfonation of only the amorphous phase while preserving the crystallinity of the membrane. Fullerenes, which improve the resistance to oxidation decomposition, were incorporated in the membranes. The fullerenes seem to be chiefly located in the amorphous regions of the samples, and do not influence the formation and evolution of the morphologies in the polymer films, as no significant differences were observed in the SANS patterns compared to the fullerenes-free s-sPS membranes, which were investigated in a previous study. The use of uniaxially deformed film samples, and neutron contrast variation allowed for the identification and characterization of different structural levels with sizes between nm and μm, which form and evolve in both the dry and hydrated states. The scattering length density of the crystalline regions was varied using the guest exchange procedure between different toluene isotopologues incorporated into the sPS lattice, while the variation of the scattering properties of the hydrated amorphous regions was achieved using different H(2)O/D(2)O mixtures. Due to the deformation of the films, the scattering characteristics of different structures can be distinguished on specific detection sectors and at different detection distances after the sample, depending on their size and orientation. MDPI 2019-10-24 /pmc/articles/PMC6918273/ /pubmed/31652905 http://dx.doi.org/10.3390/membranes9110136 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schiavone, Maria-Maddalena Iwase, Hiroki Takata, Shin-ichi Radulescu, Aurel The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title | The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title_full | The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title_fullStr | The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title_full_unstemmed | The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title_short | The Multilevel Structure of Sulfonated Syndiotactic-Polystyrene Model Polyelectrolyte Membranes Resolved by Extended Q-Range Contrast Variation SANS |
title_sort | multilevel structure of sulfonated syndiotactic-polystyrene model polyelectrolyte membranes resolved by extended q-range contrast variation sans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918273/ https://www.ncbi.nlm.nih.gov/pubmed/31652905 http://dx.doi.org/10.3390/membranes9110136 |
work_keys_str_mv | AT schiavonemariamaddalena themultilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT iwasehiroki themultilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT takatashinichi themultilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT radulescuaurel themultilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT schiavonemariamaddalena multilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT iwasehiroki multilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT takatashinichi multilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans AT radulescuaurel multilevelstructureofsulfonatedsyndiotacticpolystyrenemodelpolyelectrolytemembranesresolvedbyextendedqrangecontrastvariationsans |