Cargando…

A Review on Styrene Substitutes in Thermosets and Their Composites

In recent decades, tremendous interest and technological development have been poured into thermosets and their composites. The thermosets and composites with unsaturated double bonds curing system are especially concerned due to their versatility. To further exploit such resins, reactive diluents (...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yuchao, Fei, Mingen, Qiu, Renhui, Liu, Wendi, Qiu, Jianhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918274/
https://www.ncbi.nlm.nih.gov/pubmed/31694245
http://dx.doi.org/10.3390/polym11111815
Descripción
Sumario:In recent decades, tremendous interest and technological development have been poured into thermosets and their composites. The thermosets and composites with unsaturated double bonds curing system are especially concerned due to their versatility. To further exploit such resins, reactive diluents (RDs) with unsaturated sites are usually incorporated to improve their processability and mechanical properties. Traditional RD, styrene, is a toxic volatile organic compound and one of the anticipated carcinogens warned by the National Institute of Health, USA. Most efforts have been conducted on reducing the usage of styrene in the production of thermosets and their composites, while very few works have systematically summarized these literatures. Herein, recent developments regarding styrene substitutes in thermosets and their composites are reviewed. Potential styrene alternatives, such as vinyl derivatives of benzene and (methyl)acrylates are discussed in details. Emphasis is focused on the strategies on developing novel RD monomers through grafting unsaturated functional groups on renewable feedstocks such as carbohydrates, lignin, and fatty acids. This review also highlights the development and characteristics of RD monomers and their influence on processability and mechanical performance of the resulting thermosets and composites.