Cargando…
Gelatin Type A from Porcine Skin Used as Co-Initiator in a Radical Photo-Initiating System
In the present study, a different approach for the preparation of poly(ethylene glycol) diacrylate-gelatin (PEGDA-gelatin) hydrogels was investigated. Gelatin type A from porcine skin was used as the co-initiator of a radical photo-initiating system instead of the traditional aliphatic or aromatic a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918345/ https://www.ncbi.nlm.nih.gov/pubmed/31752153 http://dx.doi.org/10.3390/polym11111901 |
Sumario: | In the present study, a different approach for the preparation of poly(ethylene glycol) diacrylate-gelatin (PEGDA-gelatin) hydrogels was investigated. Gelatin type A from porcine skin was used as the co-initiator of a radical photo-initiating system instead of the traditional aliphatic or aromatic amines. This became possible because, upon visible-light irradiation, the amine sequences within gelatin generate initiating free-radicals through the intermolecular proton transfer in a Norrish type II reaction with camphorquinone (CQ). PEGDA-gelatin hydrogels were prepared by visible-light-induced photopolymerization. The gelatin content in the precursor formulations was varied. The influence of gelatin on the kinetics of the photocuring reaction was investigated, and it was found that gelatin fastened the rate of polymerization at all concentrations. The covalent attachment of gelatin segments within the cross-linked hydrogels was evaluated by means of attenuated total reflectance-infrared spectroscopy (ATR-FTIR) spectroscopy after solvent extraction. The thermo-mechanical properties, as well as the swelling behavior and gel content, were also investigated. |
---|