Cargando…

Partially Acetylated Cellulose Dissolved in Aqueous Solution: Physical Properties and Enzymatic Hydrolysis

Cellulose acetate is one of the most important cellulose derivatives. The use of ionic liquids in cellulose processing was recently found to act both as a solvent and also as a reagent. A recent study showed that cellulose dissolution in the ionic liquid 1-ethyl-3-methylimidazoliumacetate (EMIMAc) m...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfassi, Gilad, Rein, Dmitry M., Shpigelman, Avi, Cohen, Yachin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918359/
https://www.ncbi.nlm.nih.gov/pubmed/31652869
http://dx.doi.org/10.3390/polym11111734
Descripción
Sumario:Cellulose acetate is one of the most important cellulose derivatives. The use of ionic liquids in cellulose processing was recently found to act both as a solvent and also as a reagent. A recent study showed that cellulose dissolution in the ionic liquid 1-ethyl-3-methylimidazoliumacetate (EMIMAc) mixed with dichloromethane (DCM) resulted in controlled homogenous cellulose acetylation; yielding water-soluble cellulose acetate (WSCA). This research investigated the properties of cellulose acetate prepared in this manner, in an aqueous solution. The results revealed that WSCA fully dissolves in water, with no significant sign of molecular aggregation. Its conformation in aqueous solution exhibited a very large persistence length, estimated as over 10 nm. The WSCA exhibited surface activity, significantly reducing the surface tension of water. Because of the molecular dissolution of WSCA in water, augmented by its amphiphilicity, aqueous solutions of WSCA exhibited an overwhelmingly high rate of enzymatic hydrolysis.