Cargando…
Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive
Melt-electrospun polycaprolactone (PCL) fibers were fabricated by using NaCl as an additive. The size and morphology of the PCL fibers could be controlled by varying the concentration of the additive. The smallest size of the fibers (2.67 ± 0.57) µm was found in the sample with 8 wt% NaCl, which was...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918403/ https://www.ncbi.nlm.nih.gov/pubmed/31717880 http://dx.doi.org/10.3390/polym11111768 |
_version_ | 1783480584011513856 |
---|---|
author | Piyasin, Piyawat Yensano, Rattakarn Pinitsoontorn, Supree |
author_facet | Piyasin, Piyawat Yensano, Rattakarn Pinitsoontorn, Supree |
author_sort | Piyasin, Piyawat |
collection | PubMed |
description | Melt-electrospun polycaprolactone (PCL) fibers were fabricated by using NaCl as an additive. The size and morphology of the PCL fibers could be controlled by varying the concentration of the additive. The smallest size of the fibers (2.67 ± 0.57) µm was found in the sample with 8 wt% NaCl, which was an order of magnitude smaller than the PCL fibers without the additive. The melt-electrospun fibers were characterized using the differential scanning calorimeter (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. Interestingly, a trace of NaCl was not found in any melt-electrospun fiber. The remaining PCL after melt-electrospinning was evaporated by annealing, and the NaCl residual was found in the glass syringe. The result confirmed that the NaCl additive was not ejected from the glass syringe in the melt-electrospinning process. Instead, the NaCl additive changed the viscosity and the polarization of the molten polymer. Two parameters are crucial in determining the size and morphology of the electrospun fibers. The higher NaCl concentration could lead to higher polarization of the polymer melt and thus a stronger electrostatic force, but it could also result in an exceedingly high viscosity for melt-electrospinning. In addition, the absence of NaCl in the melt-electrospun PCL fibers is advantageous. The fibers need not be cleaned to remove additives and can be directly exploited in applications, such as tissue engineering or wound dressing. |
format | Online Article Text |
id | pubmed-6918403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69184032019-12-24 Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive Piyasin, Piyawat Yensano, Rattakarn Pinitsoontorn, Supree Polymers (Basel) Article Melt-electrospun polycaprolactone (PCL) fibers were fabricated by using NaCl as an additive. The size and morphology of the PCL fibers could be controlled by varying the concentration of the additive. The smallest size of the fibers (2.67 ± 0.57) µm was found in the sample with 8 wt% NaCl, which was an order of magnitude smaller than the PCL fibers without the additive. The melt-electrospun fibers were characterized using the differential scanning calorimeter (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. Interestingly, a trace of NaCl was not found in any melt-electrospun fiber. The remaining PCL after melt-electrospinning was evaporated by annealing, and the NaCl residual was found in the glass syringe. The result confirmed that the NaCl additive was not ejected from the glass syringe in the melt-electrospinning process. Instead, the NaCl additive changed the viscosity and the polarization of the molten polymer. Two parameters are crucial in determining the size and morphology of the electrospun fibers. The higher NaCl concentration could lead to higher polarization of the polymer melt and thus a stronger electrostatic force, but it could also result in an exceedingly high viscosity for melt-electrospinning. In addition, the absence of NaCl in the melt-electrospun PCL fibers is advantageous. The fibers need not be cleaned to remove additives and can be directly exploited in applications, such as tissue engineering or wound dressing. MDPI 2019-10-27 /pmc/articles/PMC6918403/ /pubmed/31717880 http://dx.doi.org/10.3390/polym11111768 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Piyasin, Piyawat Yensano, Rattakarn Pinitsoontorn, Supree Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title | Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title_full | Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title_fullStr | Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title_full_unstemmed | Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title_short | Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive |
title_sort | size-controllable melt-electrospun polycaprolactone (pcl) fibers with a sodium chloride additive |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918403/ https://www.ncbi.nlm.nih.gov/pubmed/31717880 http://dx.doi.org/10.3390/polym11111768 |
work_keys_str_mv | AT piyasinpiyawat sizecontrollablemeltelectrospunpolycaprolactonepclfiberswithasodiumchlorideadditive AT yensanorattakarn sizecontrollablemeltelectrospunpolycaprolactonepclfiberswithasodiumchlorideadditive AT pinitsoontornsupree sizecontrollablemeltelectrospunpolycaprolactonepclfiberswithasodiumchlorideadditive |