Cargando…

An Investigation of the Intermolecular Interactions and Recognition Properties of Molecular Imprinted Polymers for Deltamethrin through Computational Strategies

Deltamethrin (DM) is a toxic pesticide that is nonetheless widely used to control insect pests in agricultural production. Although the number of DM molecularly imprinted polymers (MIPs) is increasing in many scientific applications, the theoretical aspects of the participating intramolecular forces...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Lei, Xiao, Nan, Li, Lu, Xie, Xinan, Li, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918425/
https://www.ncbi.nlm.nih.gov/pubmed/31766182
http://dx.doi.org/10.3390/polym11111872
Descripción
Sumario:Deltamethrin (DM) is a toxic pesticide that is nonetheless widely used to control insect pests in agricultural production. Although the number of DM molecularly imprinted polymers (MIPs) is increasing in many scientific applications, the theoretical aspects of the participating intramolecular forces are not fully understood. This paper aims to explore the intermolecular interactions between the template molecule DM and the functional monomer acrylamide (AM) through density functional theory (DFT), analysis of hydrogen nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectroscopy (FTIR), and adsorption thermodynamics. The results indicated that there is strong hydrogen bonding between O19 of DM and H9 of AM, suggesting that it is the preferable site for the binding of the target molecule. The existence of interaction sites was found to play an important role in the recognition process. The results from selective adsorption experiments showed that the DM MIPs exhibited the highest adsorption capacity for DM (Q = 75.72 mg g(−1)) as compared to the five structural analogs. Furthermore, the recovery rates of spiked DM from various teas using the DM MIPs as solid-phase extraction filler also possessed a high value (all greater than 83.68%), which enables them to be used as separate and recognition functional materials.