Cargando…
Dispersed-Monolayer Graphene-Doped Polymer/Silica Hybrid Mach-Zehnder interferometer (MZI) Thermal Optical Switch with Low-Power Consumption and Fast Response
This article demonstrates a dispersed-monolayer graphene-doped polymer/silica hybrid Mach–Zehnder interferometer (MZI) thermal optical switch with low-power consumption and fast response. The polymer/silica hybrid MZI structure reduces the power consumption of the device as a result of the large the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918438/ https://www.ncbi.nlm.nih.gov/pubmed/31752135 http://dx.doi.org/10.3390/polym11111898 |
Sumario: | This article demonstrates a dispersed-monolayer graphene-doped polymer/silica hybrid Mach–Zehnder interferometer (MZI) thermal optical switch with low-power consumption and fast response. The polymer/silica hybrid MZI structure reduces the power consumption of the device as a result of the large thermal optical coefficient of the polymer material. To further decrease the response time of the thermal optical switch device, a polymethyl methacrylate, doped with monolayer graphene as a cladding material, has been synthesized. Our study theoretically analyzed the thermal conductivity of composites using the Lewis–Nielsen model. The predicted thermal conductivity of the composites increased by 133.16% at a graphene volume fraction of 0.263 vol %, due to the large thermal conductivity of graphene. Measurements taken of the fabricated thermal optical switch exhibited a power consumption of 7.68 mW, a rise time of 40 μs, and a fall time of 80 μs at a wavelength of 1550 nm. |
---|