Cargando…
Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis
Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918471/ https://www.ncbi.nlm.nih.gov/pubmed/31689967 http://dx.doi.org/10.3390/membranes9110145 |
_version_ | 1783480599513661440 |
---|---|
author | Villafaña-López, Liliana Reyes-Valadez, Daniel M. González-Vargas, Oscar A. Suárez-Toriello, Victor A. Jaime-Ferrer, Jesús S. |
author_facet | Villafaña-López, Liliana Reyes-Valadez, Daniel M. González-Vargas, Oscar A. Suárez-Toriello, Victor A. Jaime-Ferrer, Jesús S. |
author_sort | Villafaña-López, Liliana |
collection | PubMed |
description | Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 [Formula: see text] [Formula: see text] (2)) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique. |
format | Online Article Text |
id | pubmed-6918471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69184712019-12-24 Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis Villafaña-López, Liliana Reyes-Valadez, Daniel M. González-Vargas, Oscar A. Suárez-Toriello, Victor A. Jaime-Ferrer, Jesús S. Membranes (Basel) Article Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 [Formula: see text] [Formula: see text] (2)) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique. MDPI 2019-11-04 /pmc/articles/PMC6918471/ /pubmed/31689967 http://dx.doi.org/10.3390/membranes9110145 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Villafaña-López, Liliana Reyes-Valadez, Daniel M. González-Vargas, Oscar A. Suárez-Toriello, Victor A. Jaime-Ferrer, Jesús S. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title | Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title_full | Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title_fullStr | Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title_full_unstemmed | Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title_short | Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis |
title_sort | custom-made ion exchange membranes at laboratory scale for reverse electrodialysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918471/ https://www.ncbi.nlm.nih.gov/pubmed/31689967 http://dx.doi.org/10.3390/membranes9110145 |
work_keys_str_mv | AT villafanalopezliliana custommadeionexchangemembranesatlaboratoryscaleforreverseelectrodialysis AT reyesvaladezdanielm custommadeionexchangemembranesatlaboratoryscaleforreverseelectrodialysis AT gonzalezvargasoscara custommadeionexchangemembranesatlaboratoryscaleforreverseelectrodialysis AT suareztoriellovictora custommadeionexchangemembranesatlaboratoryscaleforreverseelectrodialysis AT jaimeferrerjesuss custommadeionexchangemembranesatlaboratoryscaleforreverseelectrodialysis |