Cargando…
Prediction and clinical utility of a contralateral breast cancer risk model
BACKGROUND: Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction model and evaluate its applicability for clinical decision-making. M...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918633/ https://www.ncbi.nlm.nih.gov/pubmed/31847907 http://dx.doi.org/10.1186/s13058-019-1221-1 |
_version_ | 1783480630916415488 |
---|---|
author | Giardiello, Daniele Steyerberg, Ewout W. Hauptmann, Michael Adank, Muriel A. Akdeniz, Delal Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Brinkhuis, Mariël Chang-Claude, Jenny Czene, Kamila Devilee, Peter Dunning, Alison M. Easton, Douglas F. Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine Flyger, Henrik García-Closas, Montserrat Haeberle, Lothar Haiman, Christopher A. Hall, Per Hamann, Ute Hopper, John L. Jager, Agnes Jakubowska, Anna Jung, Audrey Keeman, Renske Kramer, Iris Lambrechts, Diether Le Marchand, Loic Lindblom, Annika Lubiński, Jan Manoochehri, Mehdi Mariani, Luigi Nevanlinna, Heli Oldenburg, Hester S. A. Pelders, Saskia Pharoah, Paul D. P. Shah, Mitul Siesling, Sabine Smit, Vincent T. H. B. M. Southey, Melissa C. Tapper, William J. Tollenaar, Rob A. E. M. van den Broek, Alexandra J. van Deurzen, Carolien H. M. van Leeuwen, Flora E. van Ongeval, Chantal Van’t Veer, Laura J. Wang, Qin Wendt, Camilla Westenend, Pieter J. Hooning, Maartje J. Schmidt, Marjanka K. |
author_facet | Giardiello, Daniele Steyerberg, Ewout W. Hauptmann, Michael Adank, Muriel A. Akdeniz, Delal Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Brinkhuis, Mariël Chang-Claude, Jenny Czene, Kamila Devilee, Peter Dunning, Alison M. Easton, Douglas F. Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine Flyger, Henrik García-Closas, Montserrat Haeberle, Lothar Haiman, Christopher A. Hall, Per Hamann, Ute Hopper, John L. Jager, Agnes Jakubowska, Anna Jung, Audrey Keeman, Renske Kramer, Iris Lambrechts, Diether Le Marchand, Loic Lindblom, Annika Lubiński, Jan Manoochehri, Mehdi Mariani, Luigi Nevanlinna, Heli Oldenburg, Hester S. A. Pelders, Saskia Pharoah, Paul D. P. Shah, Mitul Siesling, Sabine Smit, Vincent T. H. B. M. Southey, Melissa C. Tapper, William J. Tollenaar, Rob A. E. M. van den Broek, Alexandra J. van Deurzen, Carolien H. M. van Leeuwen, Flora E. van Ongeval, Chantal Van’t Veer, Laura J. Wang, Qin Wendt, Camilla Westenend, Pieter J. Hooning, Maartje J. Schmidt, Marjanka K. |
author_sort | Giardiello, Daniele |
collection | PubMed |
description | BACKGROUND: Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction model and evaluate its applicability for clinical decision-making. METHODS: We included data of 132,756 invasive non-metastatic breast cancer patients from 20 studies with 4682 CBC events and a median follow-up of 8.8 years. We developed a multivariable Fine and Gray prediction model (PredictCBC-1A) including patient, primary tumor, and treatment characteristics and BRCA1/2 germline mutation status, accounting for the competing risks of death and distant metastasis. We also developed a model without BRCA1/2 mutation status (PredictCBC-1B) since this information was available for only 6% of patients and is routinely unavailable in the general breast cancer population. Prediction performance was evaluated using calibration and discrimination, calculated by a time-dependent area under the curve (AUC) at 5 and 10 years after diagnosis of primary breast cancer, and an internal-external cross-validation procedure. Decision curve analysis was performed to evaluate the net benefit of the model to quantify clinical utility. RESULTS: In the multivariable model, BRCA1/2 germline mutation status, family history, and systemic adjuvant treatment showed the strongest associations with CBC risk. The AUC of PredictCBC-1A was 0.63 (95% prediction interval (PI) at 5 years, 0.52–0.74; at 10 years, 0.53–0.72). Calibration-in-the-large was -0.13 (95% PI: -1.62–1.37), and the calibration slope was 0.90 (95% PI: 0.73–1.08). The AUC of Predict-1B at 10 years was 0.59 (95% PI: 0.52–0.66); calibration was slightly lower. Decision curve analysis for preventive contralateral mastectomy showed potential clinical utility of PredictCBC-1A between thresholds of 4–10% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: We developed a reasonably calibrated model to predict the risk of CBC in women of European-descent; however, prediction accuracy was moderate. Our model shows potential for improved risk counseling, but decision-making regarding contralateral preventive mastectomy, especially in the general breast cancer population where limited information of the mutation status in BRCA1/2 is available, remains challenging. |
format | Online Article Text |
id | pubmed-6918633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69186332019-12-20 Prediction and clinical utility of a contralateral breast cancer risk model Giardiello, Daniele Steyerberg, Ewout W. Hauptmann, Michael Adank, Muriel A. Akdeniz, Delal Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Brinkhuis, Mariël Chang-Claude, Jenny Czene, Kamila Devilee, Peter Dunning, Alison M. Easton, Douglas F. Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine Flyger, Henrik García-Closas, Montserrat Haeberle, Lothar Haiman, Christopher A. Hall, Per Hamann, Ute Hopper, John L. Jager, Agnes Jakubowska, Anna Jung, Audrey Keeman, Renske Kramer, Iris Lambrechts, Diether Le Marchand, Loic Lindblom, Annika Lubiński, Jan Manoochehri, Mehdi Mariani, Luigi Nevanlinna, Heli Oldenburg, Hester S. A. Pelders, Saskia Pharoah, Paul D. P. Shah, Mitul Siesling, Sabine Smit, Vincent T. H. B. M. Southey, Melissa C. Tapper, William J. Tollenaar, Rob A. E. M. van den Broek, Alexandra J. van Deurzen, Carolien H. M. van Leeuwen, Flora E. van Ongeval, Chantal Van’t Veer, Laura J. Wang, Qin Wendt, Camilla Westenend, Pieter J. Hooning, Maartje J. Schmidt, Marjanka K. Breast Cancer Res Research Article BACKGROUND: Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction model and evaluate its applicability for clinical decision-making. METHODS: We included data of 132,756 invasive non-metastatic breast cancer patients from 20 studies with 4682 CBC events and a median follow-up of 8.8 years. We developed a multivariable Fine and Gray prediction model (PredictCBC-1A) including patient, primary tumor, and treatment characteristics and BRCA1/2 germline mutation status, accounting for the competing risks of death and distant metastasis. We also developed a model without BRCA1/2 mutation status (PredictCBC-1B) since this information was available for only 6% of patients and is routinely unavailable in the general breast cancer population. Prediction performance was evaluated using calibration and discrimination, calculated by a time-dependent area under the curve (AUC) at 5 and 10 years after diagnosis of primary breast cancer, and an internal-external cross-validation procedure. Decision curve analysis was performed to evaluate the net benefit of the model to quantify clinical utility. RESULTS: In the multivariable model, BRCA1/2 germline mutation status, family history, and systemic adjuvant treatment showed the strongest associations with CBC risk. The AUC of PredictCBC-1A was 0.63 (95% prediction interval (PI) at 5 years, 0.52–0.74; at 10 years, 0.53–0.72). Calibration-in-the-large was -0.13 (95% PI: -1.62–1.37), and the calibration slope was 0.90 (95% PI: 0.73–1.08). The AUC of Predict-1B at 10 years was 0.59 (95% PI: 0.52–0.66); calibration was slightly lower. Decision curve analysis for preventive contralateral mastectomy showed potential clinical utility of PredictCBC-1A between thresholds of 4–10% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: We developed a reasonably calibrated model to predict the risk of CBC in women of European-descent; however, prediction accuracy was moderate. Our model shows potential for improved risk counseling, but decision-making regarding contralateral preventive mastectomy, especially in the general breast cancer population where limited information of the mutation status in BRCA1/2 is available, remains challenging. BioMed Central 2019-12-17 2019 /pmc/articles/PMC6918633/ /pubmed/31847907 http://dx.doi.org/10.1186/s13058-019-1221-1 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Giardiello, Daniele Steyerberg, Ewout W. Hauptmann, Michael Adank, Muriel A. Akdeniz, Delal Blomqvist, Carl Bojesen, Stig E. Bolla, Manjeet K. Brinkhuis, Mariël Chang-Claude, Jenny Czene, Kamila Devilee, Peter Dunning, Alison M. Easton, Douglas F. Eccles, Diana M. Fasching, Peter A. Figueroa, Jonine Flyger, Henrik García-Closas, Montserrat Haeberle, Lothar Haiman, Christopher A. Hall, Per Hamann, Ute Hopper, John L. Jager, Agnes Jakubowska, Anna Jung, Audrey Keeman, Renske Kramer, Iris Lambrechts, Diether Le Marchand, Loic Lindblom, Annika Lubiński, Jan Manoochehri, Mehdi Mariani, Luigi Nevanlinna, Heli Oldenburg, Hester S. A. Pelders, Saskia Pharoah, Paul D. P. Shah, Mitul Siesling, Sabine Smit, Vincent T. H. B. M. Southey, Melissa C. Tapper, William J. Tollenaar, Rob A. E. M. van den Broek, Alexandra J. van Deurzen, Carolien H. M. van Leeuwen, Flora E. van Ongeval, Chantal Van’t Veer, Laura J. Wang, Qin Wendt, Camilla Westenend, Pieter J. Hooning, Maartje J. Schmidt, Marjanka K. Prediction and clinical utility of a contralateral breast cancer risk model |
title | Prediction and clinical utility of a contralateral breast cancer risk model |
title_full | Prediction and clinical utility of a contralateral breast cancer risk model |
title_fullStr | Prediction and clinical utility of a contralateral breast cancer risk model |
title_full_unstemmed | Prediction and clinical utility of a contralateral breast cancer risk model |
title_short | Prediction and clinical utility of a contralateral breast cancer risk model |
title_sort | prediction and clinical utility of a contralateral breast cancer risk model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918633/ https://www.ncbi.nlm.nih.gov/pubmed/31847907 http://dx.doi.org/10.1186/s13058-019-1221-1 |
work_keys_str_mv | AT giardiellodaniele predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT steyerbergewoutw predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT hauptmannmichael predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT adankmuriela predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT akdenizdelal predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT blomqvistcarl predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT bojesenstige predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT bollamanjeetk predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT brinkhuismariel predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT changclaudejenny predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT czenekamila predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT devileepeter predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT dunningalisonm predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT eastondouglasf predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT ecclesdianam predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT faschingpetera predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT figueroajonine predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT flygerhenrik predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT garciaclosasmontserrat predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT haeberlelothar predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT haimanchristophera predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT hallper predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT hamannute predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT hopperjohnl predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT jageragnes predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT jakubowskaanna predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT jungaudrey predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT keemanrenske predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT krameriris predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT lambrechtsdiether predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT lemarchandloic predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT lindblomannika predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT lubinskijan predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT manoochehrimehdi predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT marianiluigi predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT nevanlinnaheli predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT oldenburghestersa predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT pelderssaskia predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT pharoahpauldp predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT shahmitul predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT sieslingsabine predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT smitvincentthbm predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT southeymelissac predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT tapperwilliamj predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT tollenaarrobaem predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT vandenbroekalexandraj predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT vandeurzencarolienhm predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT vanleeuwenflorae predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT vanongevalchantal predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT vantveerlauraj predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT wangqin predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT wendtcamilla predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT westenendpieterj predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT hooningmaartjej predictionandclinicalutilityofacontralateralbreastcancerriskmodel AT schmidtmarjankak predictionandclinicalutilityofacontralateralbreastcancerriskmodel |