Cargando…
Benchmark and Parameter Sensitivity Analysis of Single-Cell RNA Sequencing Clustering Methods
Single-cell RNA-seq (scRNAseq) is a powerful tool to study heterogeneity of cells. Recently, several clustering based methods have been proposed to identify distinct cell populations. These methods are based on different statistical models and usually require to perform several additional steps, suc...
Autores principales: | Krzak, Monika, Raykov, Yordan, Boukouvalas, Alexis, Cutillo, Luisa, Angelini, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918801/ https://www.ncbi.nlm.nih.gov/pubmed/31921297 http://dx.doi.org/10.3389/fgene.2019.01253 |
Ejemplares similares
-
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm
por: Raykov, Yordan P., et al.
Publicado: (2016) -
OscoNet: inferring oscillatory gene networks
por: Cutillo, Luisa, et al.
Publicado: (2020) -
A Distributed Whole Genome Sequencing Benchmark Study
por: Corbett, Richard D., et al.
Publicado: (2020) -
PRECISION.seq: An R Package for Benchmarking Depth Normalization in microRNA Sequencing
por: Zou, Jian, et al.
Publicado: (2022) -
A Benchmark of Genetic Variant Calling Pipelines Using Metagenomic Short-Read Sequencing
por: Andreu-Sánchez, Sergio, et al.
Publicado: (2021)