Cargando…

Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells

CRISPR and CRISPR-Cas effector proteins enable the targeting of DNA double-strand breaks to defined loci based on a variable length RNA guide specific to each effector. The guide RNAs are generally similar in size and form, consisting of a ∼20 nucleotide sequence complementary to the DNA target and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wierson, Wesley A., Simone, Brandon W., WareJoncas, Zachary, Mann, Carla, Welker, Jordan M., Kar, Bibekananda, Emch, Michael J., Friedberg, Iddo, Gendron, William A.C., Barry, Michael A., Clark, Karl J., Dobbs, Drena L., McGrail, Maura A., Ekker, Stephen C., Essner, Jeffrey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919245/
https://www.ncbi.nlm.nih.gov/pubmed/31742435
http://dx.doi.org/10.1089/crispr.2019.0026
_version_ 1783480734211637248
author Wierson, Wesley A.
Simone, Brandon W.
WareJoncas, Zachary
Mann, Carla
Welker, Jordan M.
Kar, Bibekananda
Emch, Michael J.
Friedberg, Iddo
Gendron, William A.C.
Barry, Michael A.
Clark, Karl J.
Dobbs, Drena L.
McGrail, Maura A.
Ekker, Stephen C.
Essner, Jeffrey J.
author_facet Wierson, Wesley A.
Simone, Brandon W.
WareJoncas, Zachary
Mann, Carla
Welker, Jordan M.
Kar, Bibekananda
Emch, Michael J.
Friedberg, Iddo
Gendron, William A.C.
Barry, Michael A.
Clark, Karl J.
Dobbs, Drena L.
McGrail, Maura A.
Ekker, Stephen C.
Essner, Jeffrey J.
author_sort Wierson, Wesley A.
collection PubMed
description CRISPR and CRISPR-Cas effector proteins enable the targeting of DNA double-strand breaks to defined loci based on a variable length RNA guide specific to each effector. The guide RNAs are generally similar in size and form, consisting of a ∼20 nucleotide sequence complementary to the DNA target and an RNA secondary structure recognized by the effector. However, the effector proteins vary in protospacer adjacent motif requirements, nuclease activities, and DNA binding kinetics. Recently, ErCas12a, a new member of the Cas12a family, was identified in Eubacterium rectale. Here, we report the first characterization of ErCas12a activity in zebrafish and expand on previously reported activity in human cells. Using a fluorescent reporter system, we show that CRISPR-ErCas12a elicits strand annealing mediated DNA repair more efficiently than CRISPR-Cas9. Further, using our previously reported gene targeting method that utilizes short homology, GeneWeld, we demonstrate the use of CRISPR-ErCas12a to integrate reporter alleles into the genomes of both zebrafish and human cells. Together, this work provides methods for deploying an additional CRISPR-Cas system, thus increasing the flexibility researchers have in applying genome engineering technologies.
format Online
Article
Text
id pubmed-6919245
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Mary Ann Liebert, Inc., publishers
record_format MEDLINE/PubMed
spelling pubmed-69192452019-12-23 Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells Wierson, Wesley A. Simone, Brandon W. WareJoncas, Zachary Mann, Carla Welker, Jordan M. Kar, Bibekananda Emch, Michael J. Friedberg, Iddo Gendron, William A.C. Barry, Michael A. Clark, Karl J. Dobbs, Drena L. McGrail, Maura A. Ekker, Stephen C. Essner, Jeffrey J. CRISPR J Research Articles CRISPR and CRISPR-Cas effector proteins enable the targeting of DNA double-strand breaks to defined loci based on a variable length RNA guide specific to each effector. The guide RNAs are generally similar in size and form, consisting of a ∼20 nucleotide sequence complementary to the DNA target and an RNA secondary structure recognized by the effector. However, the effector proteins vary in protospacer adjacent motif requirements, nuclease activities, and DNA binding kinetics. Recently, ErCas12a, a new member of the Cas12a family, was identified in Eubacterium rectale. Here, we report the first characterization of ErCas12a activity in zebrafish and expand on previously reported activity in human cells. Using a fluorescent reporter system, we show that CRISPR-ErCas12a elicits strand annealing mediated DNA repair more efficiently than CRISPR-Cas9. Further, using our previously reported gene targeting method that utilizes short homology, GeneWeld, we demonstrate the use of CRISPR-ErCas12a to integrate reporter alleles into the genomes of both zebrafish and human cells. Together, this work provides methods for deploying an additional CRISPR-Cas system, thus increasing the flexibility researchers have in applying genome engineering technologies. Mary Ann Liebert, Inc., publishers 2019-12-01 2019-12-16 /pmc/articles/PMC6919245/ /pubmed/31742435 http://dx.doi.org/10.1089/crispr.2019.0026 Text en © Wesley A. Wierson et al. 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wierson, Wesley A.
Simone, Brandon W.
WareJoncas, Zachary
Mann, Carla
Welker, Jordan M.
Kar, Bibekananda
Emch, Michael J.
Friedberg, Iddo
Gendron, William A.C.
Barry, Michael A.
Clark, Karl J.
Dobbs, Drena L.
McGrail, Maura A.
Ekker, Stephen C.
Essner, Jeffrey J.
Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title_full Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title_fullStr Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title_full_unstemmed Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title_short Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells
title_sort expanding the crispr toolbox with ercas12a in zebrafish and human cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919245/
https://www.ncbi.nlm.nih.gov/pubmed/31742435
http://dx.doi.org/10.1089/crispr.2019.0026
work_keys_str_mv AT wiersonwesleya expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT simonebrandonw expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT warejoncaszachary expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT manncarla expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT welkerjordanm expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT karbibekananda expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT emchmichaelj expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT friedbergiddo expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT gendronwilliamac expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT barrymichaela expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT clarkkarlj expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT dobbsdrenal expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT mcgrailmauraa expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT ekkerstephenc expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells
AT essnerjeffreyj expandingthecrisprtoolboxwithercas12ainzebrafishandhumancells