Cargando…

Electrophoretic Deposition for Lithium‐Ion Battery Electrode Manufacture

Electrophoretic deposition (EPD) has received increasing attention as an alternative manufacturing approach to slurry casting for the production of battery and supercapacitor electrodes. This process is of relevance for industrial scalability as evidently seen in the current electrophoretic paints i...

Descripción completa

Detalles Bibliográficos
Autores principales: Lalau, Cornel C., Low, Chee T. John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919341/
https://www.ncbi.nlm.nih.gov/pubmed/31894203
http://dx.doi.org/10.1002/batt.201900017
Descripción
Sumario:Electrophoretic deposition (EPD) has received increasing attention as an alternative manufacturing approach to slurry casting for the production of battery and supercapacitor electrodes. This process is of relevance for industrial scalability as evidently seen in the current electrophoretic paints industry. Nevertheless, the reported work so far have only concentrated on thin films of electrophoretically deposited electrodes for energy storage. Here, the electrochemical performance of thick films (up to tens of μm) as lithium‐ion battery electrodes produced by EPD is reported. A commercially sourced LiN(1/3)M(1/3)C(1/3)O(2) (5 to 25 μm particle size) was used in this exemplary investigation. This work shows the production of binder‐free high density active material (>90 %) electrodes. Coin cells were assembled and the battery performance was measured. Tests included: cyclic voltammetry, C‐rate vs capacity, battery cycling and electrochemical impedance spectroscopy. Other investigations also studied: colloidal electrolyte formulation, electrode manufacture, microstructure characterisation and elemental mapping analysis. In short, EPD electrode manufacture can be applied as a platform technology for any battery and supercapacitor material, and the reported manufacturing processes and methodologies represent direct relevance to produce energy storage electrodes useful to practical applications.