Cargando…
A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
In this paper, a simple yet interpretable, probabilistic model is proposed for the prediction of reported case counts of infectious diseases. A spatio-temporal kernel is derived from training data to capture the typical interaction effects of reported infections across time and space, which provides...
Autores principales: | Stojanović, Olivera, Leugering, Johannes, Pipa, Gordon, Ghozzi, Stéphane, Ullrich, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919583/ https://www.ncbi.nlm.nih.gov/pubmed/31851680 http://dx.doi.org/10.1371/journal.pone.0225838 |
Ejemplares similares
-
Monte Carlo methods in Bayesian computation
por: Chen, Ming-Hui, et al.
Publicado: (2000) -
Monte Carlo methods in Bayesian computation /
por: Chen, Ming-Hui, 1961-
Publicado: (2000) -
Supervised Learning for Automated Infectious-Disease-Outbreak Detection
por: Zacher, Benedikt, et al.
Publicado: (2019) -
Efficient quadrature rules for illumination integrals: from quasi Monte Carlo to Bayesian Monte Carlo
por: Marques, Ricardo, et al.
Publicado: (2015) -
Predicting epileptic seizures using nonnegative matrix factorization
por: Stojanović, Olivera, et al.
Publicado: (2020)