Cargando…
Low-rank graph optimization for multi-view dimensionality reduction
Graph-based dimensionality reduction methods have attracted substantial attention due to their successful applications in many tasks, including classification and clustering. However, most classical graph-based dimensionality reduction approaches are only applied to data from one view. Hence, combin...
Autores principales: | Qian, Youcheng, Yin, Xueyan, Kong, Jun, Wang, Jianzhong, Gao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919611/ https://www.ncbi.nlm.nih.gov/pubmed/31851696 http://dx.doi.org/10.1371/journal.pone.0225987 |
Ejemplares similares
-
Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data
por: Wang, Juan, et al.
Publicado: (2022) -
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
por: Tian, Hao, et al.
Publicado: (2022) -
Graph ranking for exploratory gene data analysis
por: Gao, Cuilan, et al.
Publicado: (2009) -
Multiple graph regularized protein domain ranking
por: Wang, Jim Jing-Yan, et al.
Publicado: (2012)