Cargando…

Machine learning models to predict onset of dementia: A label learning approach

INTRODUCTION: The study objective was to build a machine learning model to predict incident mild cognitive impairment, Alzheimer's Disease, and related dementias from structured data using administrative and electronic health record sources. METHODS: A cohort of patients (n = 121,907) and contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nori, Vijay S., Hane, Christopher A., Crown, William H., Au, Rhoda, Burke, William J., Sanghavi, Darshak M., Bleicher, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920083/
https://www.ncbi.nlm.nih.gov/pubmed/31879701
http://dx.doi.org/10.1016/j.trci.2019.10.006
Descripción
Sumario:INTRODUCTION: The study objective was to build a machine learning model to predict incident mild cognitive impairment, Alzheimer's Disease, and related dementias from structured data using administrative and electronic health record sources. METHODS: A cohort of patients (n = 121,907) and controls (n = 5,307,045) was created for modeling using data within 2 years of patient's incident diagnosis date. Additional cohorts 3–8 years removed from index data are used for prediction. Training cohorts were matched on age, gender, index year, and utilization, and fit with a gradient boosting machine, lightGBM. RESULTS: Incident 2-year model quality on a held-out test set had a sensitivity of 47% and area-under-the-curve of 87%. In the 3-year model, the learned labels achieved 24% (71%), which dropped to 15% (72%) in year 8. DISCUSSION: The ability of the model to discriminate incident cases of dementia implies that it can be a worthwhile tool to screen patients for trial recruitment and patient management.