Cargando…

Simultaneous detection and comprehensive analysis of HPV and microbiome status of a cervical liquid-based cytology sample using Nanopore MinION sequencing

Human papillomavirus (HPV) is a major pathogen that causes cervical cancer and many other related diseases. HPV infection related cervical microbiome could be an induce factor of cervical cancer. However, it is uncommon to find a single test on the market that can simultaneously provide information...

Descripción completa

Detalles Bibliográficos
Autores principales: Quan, Lili, Dong, Ruyi, Yang, Wenjuan, Chen, Lanyou, Lang, Jidong, Liu, Jia, Song, Yu, Ma, Shuiqing, Yang, Jialiang, Wang, Weiwei, Meng, Bo, Tian, Geng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920169/
https://www.ncbi.nlm.nih.gov/pubmed/31852945
http://dx.doi.org/10.1038/s41598-019-55843-y
Descripción
Sumario:Human papillomavirus (HPV) is a major pathogen that causes cervical cancer and many other related diseases. HPV infection related cervical microbiome could be an induce factor of cervical cancer. However, it is uncommon to find a single test on the market that can simultaneously provide information on both HPV and the microbiome. Herein, a novel method was developed in this study to simultaneously detect HPV infection and microbiota composition promptly and accurately. It provides a new and simple way to detect vaginal pathogen situation and also provide valuable information for clinical diagnose. This approach combined multiplex PCR, which targeted both HPV16 E6E7 and full-length 16S rRNA, and Nanopore sequencing to generate enough information to understand the vagina condition of patients. One HPV positive liquid-based cytology (LBC) sample was sequenced and analyzed. After comparing with Illumina sequencing, the results from Nanopore showed a similar microbiome composition. An instant sequencing evaluation showed that 15 min sequencing is enough to identify the top 10 most abundant bacteria. Moreover, two HPV integration sites were identified and verified by Sanger sequencing. This approach has many potential applications in pathogen detection and can potentially aid in providing a more rapid clinical diagnosis.