Cargando…
Contribution of Angiogenesis to Inflammation and Cancer
During carcinogenesis, advanced tumors are surrounded by both stromal and immune cells, which support tumor development. In addition, inflammation and angiogenesis are processes that play important roles in the development of cancer, from the initiation of carcinogenesis, tumor in situ and advanced...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920210/ https://www.ncbi.nlm.nih.gov/pubmed/31921656 http://dx.doi.org/10.3389/fonc.2019.01399 |
_version_ | 1783480901158567936 |
---|---|
author | Aguilar-Cazares, Dolores Chavez-Dominguez, Rodolfo Carlos-Reyes, Angeles Lopez-Camarillo, César Hernadez de la Cruz, Olga N. Lopez-Gonzalez, Jose S. |
author_facet | Aguilar-Cazares, Dolores Chavez-Dominguez, Rodolfo Carlos-Reyes, Angeles Lopez-Camarillo, César Hernadez de la Cruz, Olga N. Lopez-Gonzalez, Jose S. |
author_sort | Aguilar-Cazares, Dolores |
collection | PubMed |
description | During carcinogenesis, advanced tumors are surrounded by both stromal and immune cells, which support tumor development. In addition, inflammation and angiogenesis are processes that play important roles in the development of cancer, from the initiation of carcinogenesis, tumor in situ and advanced stages of cancer. During acute inflammation, vascular hyperpermeability allows inflammatory mediators and immune response cells, including leukocytes and monocytes/macrophages, to infiltrate the site of damage. As a factor that regulates vascular permeability, vascular endothelial growth factor (VEGF) also plays a vital role as a multifunctional molecule and growth factor. Furthermore, stromal and immune cells secrete soluble factors that activate endothelial cells and favor their transmigration to eliminate the aggressive agent. In this review, we present a comprehensive view of both the relationship between chronic inflammation and angiogenesis during carcinogenesis and the participation of endothelial cells in the inflammatory process. In addition, the regulatory mechanisms that contribute to the endothelium returning to its basal permeability state after acute inflammation are discussed. Moreover, the manner in which immune cells participate in pathological angiogenesis release pro-angiogenic factors that contribute to early tumor vascularization, even before the angiogenic switch occurs, is also examined. Also, we discuss the role of hypoxia as a mechanism that drives the acquisition of tumor hallmarks that make certain cancers more aggressive. Finally, some combinations of therapies that inhibit the angiogenesis process and that may be a successful strategy for cancer patients are indicated. |
format | Online Article Text |
id | pubmed-6920210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69202102020-01-09 Contribution of Angiogenesis to Inflammation and Cancer Aguilar-Cazares, Dolores Chavez-Dominguez, Rodolfo Carlos-Reyes, Angeles Lopez-Camarillo, César Hernadez de la Cruz, Olga N. Lopez-Gonzalez, Jose S. Front Oncol Oncology During carcinogenesis, advanced tumors are surrounded by both stromal and immune cells, which support tumor development. In addition, inflammation and angiogenesis are processes that play important roles in the development of cancer, from the initiation of carcinogenesis, tumor in situ and advanced stages of cancer. During acute inflammation, vascular hyperpermeability allows inflammatory mediators and immune response cells, including leukocytes and monocytes/macrophages, to infiltrate the site of damage. As a factor that regulates vascular permeability, vascular endothelial growth factor (VEGF) also plays a vital role as a multifunctional molecule and growth factor. Furthermore, stromal and immune cells secrete soluble factors that activate endothelial cells and favor their transmigration to eliminate the aggressive agent. In this review, we present a comprehensive view of both the relationship between chronic inflammation and angiogenesis during carcinogenesis and the participation of endothelial cells in the inflammatory process. In addition, the regulatory mechanisms that contribute to the endothelium returning to its basal permeability state after acute inflammation are discussed. Moreover, the manner in which immune cells participate in pathological angiogenesis release pro-angiogenic factors that contribute to early tumor vascularization, even before the angiogenic switch occurs, is also examined. Also, we discuss the role of hypoxia as a mechanism that drives the acquisition of tumor hallmarks that make certain cancers more aggressive. Finally, some combinations of therapies that inhibit the angiogenesis process and that may be a successful strategy for cancer patients are indicated. Frontiers Media S.A. 2019-12-12 /pmc/articles/PMC6920210/ /pubmed/31921656 http://dx.doi.org/10.3389/fonc.2019.01399 Text en Copyright © 2019 Aguilar-Cazares, Chavez-Dominguez, Carlos-Reyes, Lopez-Camarillo, Hernadez de la Cruz and Lopez-Gonzalez. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Aguilar-Cazares, Dolores Chavez-Dominguez, Rodolfo Carlos-Reyes, Angeles Lopez-Camarillo, César Hernadez de la Cruz, Olga N. Lopez-Gonzalez, Jose S. Contribution of Angiogenesis to Inflammation and Cancer |
title | Contribution of Angiogenesis to Inflammation and Cancer |
title_full | Contribution of Angiogenesis to Inflammation and Cancer |
title_fullStr | Contribution of Angiogenesis to Inflammation and Cancer |
title_full_unstemmed | Contribution of Angiogenesis to Inflammation and Cancer |
title_short | Contribution of Angiogenesis to Inflammation and Cancer |
title_sort | contribution of angiogenesis to inflammation and cancer |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920210/ https://www.ncbi.nlm.nih.gov/pubmed/31921656 http://dx.doi.org/10.3389/fonc.2019.01399 |
work_keys_str_mv | AT aguilarcazaresdolores contributionofangiogenesistoinflammationandcancer AT chavezdominguezrodolfo contributionofangiogenesistoinflammationandcancer AT carlosreyesangeles contributionofangiogenesistoinflammationandcancer AT lopezcamarillocesar contributionofangiogenesistoinflammationandcancer AT hernadezdelacruzolgan contributionofangiogenesistoinflammationandcancer AT lopezgonzalezjoses contributionofangiogenesistoinflammationandcancer |