Cargando…
Automated acquisition of explainable knowledge from unannotated histopathology images
Deep learning algorithms have been successfully used in medical image classification. In the next stage, the technology of acquiring explainable knowledge from medical images is highly desired. Here we show that deep learning algorithm enables automated acquisition of explainable features from diagn...
Autores principales: | Yamamoto, Yoichiro, Tsuzuki, Toyonori, Akatsuka, Jun, Ueki, Masao, Morikawa, Hiromu, Numata, Yasushi, Takahara, Taishi, Tsuyuki, Takuji, Tsutsumi, Kotaro, Nakazawa, Ryuto, Shimizu, Akira, Maeda, Ichiro, Tsuchiya, Shinichi, Kanno, Hiroyuki, Kondo, Yukihiro, Fukumoto, Manabu, Tamiya, Gen, Ueda, Naonori, Kimura, Go |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920352/ https://www.ncbi.nlm.nih.gov/pubmed/31852890 http://dx.doi.org/10.1038/s41467-019-13647-8 |
Ejemplares similares
-
Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches
por: Akatsuka, Jun, et al.
Publicado: (2019) -
Pathological and Molecular Features of Nodal Peripheral T-Cell Lymphomas
por: Satou, Akira, et al.
Publicado: (2022) -
Hodgkin Lymphoma: Biology and Differential Diagnostic Problem
por: Takahara, Taishi, et al.
Publicado: (2022) -
The Immunology of DLBCL
por: Takahara, Taishi, et al.
Publicado: (2023) -
Identification of Unannotated Small Genes in Salmonella
por: Baek, Jonghwan, et al.
Publicado: (2017)