Cargando…
A novel, sensitive dual-indicator cell line for detection and quantification of inducible, replication-competent latent HIV-1 from reservoir cells
Understanding the mechanisms involved in HIV infection and latency, and development of a cure, rely on the availability of sensitive research tools such as indicator cells, which allow rigorous quantification of viral activity. Here we describe the construction and validation of a novel dual-indicat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920355/ https://www.ncbi.nlm.nih.gov/pubmed/31852924 http://dx.doi.org/10.1038/s41598-019-55596-8 |
Sumario: | Understanding the mechanisms involved in HIV infection and latency, and development of a cure, rely on the availability of sensitive research tools such as indicator cells, which allow rigorous quantification of viral activity. Here we describe the construction and validation of a novel dual-indicator cell line, Sup-GGR, which offers two different readouts to quantify viral replication. A construct expressing both Gaussia luciferase and hrGFP in a Tat- and Rev-dependent manner was engineered into SupT1-CCR5 to create Sup-GGR cells. This cell line supports the replication of both X4 and R5-tropic HIV as efficiently as its parental cell line, SupT1-CCR5, and allows repeated sampling without the need to terminate the culture. Sup-GGR demonstrates comparable sensitivity and similar kinetics in virus outgrowth assays (VOA) to SupT1-CCR5 using clinical samples. However the Gaussia luciferase reporter is significantly less labor-intensive and allows earlier detection of reactivated latent viruses compared to the conventional HIV p24 ELISA assay. The Sup-GGR cell line constitutes a versatile new tool for HIV research and clinical trials. |
---|