Cargando…
A future of automated image contouring with machine learning in radiation therapy
Automated image contouring is showing improvements in efficiency for a number of clinical tasks in radiotherapy. While atlas segmentation has proven moderately beneficial, the next generation of algorithms based on convolutional neural networks is already pointing to improvements in precision and ef...
Autores principales: | Jackson, Price, Kron, Tomas, Hardcastle, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920687/ https://www.ncbi.nlm.nih.gov/pubmed/31854138 http://dx.doi.org/10.1002/jmrs.365 |
Ejemplares similares
-
Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy
por: Jackson, Price, et al.
Publicado: (2018) -
Upright Radiation Therapy—A Historical Reflection and Opportunities for Future Applications
por: Rahim, Sulman, et al.
Publicado: (2020) -
Automated assessment of functional lung imaging with (68)Ga-ventilation/perfusion PET/CT using iterative histogram analysis
por: McIntosh, Lachlan, et al.
Publicado: (2021) -
Automated Contouring and Planning in Radiation Therapy: What Is ‘Clinically Acceptable’?
por: Baroudi, Hana, et al.
Publicado: (2023) -
Machine learning applications in radiation oncology
por: Field, Matthew, et al.
Publicado: (2021)