Cargando…

Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor

Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metaboli...

Descripción completa

Detalles Bibliográficos
Autores principales: Monteiro, Francisca, Hubmann, Georg, Takhaveev, Vakil, Vedelaar, Silke R, Norder, Justin, Hekelaar, Johan, Saldida, Joana, Litsios, Athanasios, Wijma, Hein J, Schmidt, Alexander, Heinemann, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920703/
https://www.ncbi.nlm.nih.gov/pubmed/31885198
http://dx.doi.org/10.15252/msb.20199071
Descripción
Sumario:Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metabolite levels in single cells, we lack capability to measure metabolic flux, i.e., the ultimate functional output of metabolic activity, on the single‐cell level. Here, combining promoter engineering, computational protein design, biochemical methods, proteomics, and metabolomics, we developed a biosensor to measure glycolytic flux in single yeast cells. Therefore, drawing on the robust cell‐intrinsic correlation between glycolytic flux and levels of fructose‐1,6‐bisphosphate (FBP), we transplanted the B. subtilis FBP‐binding transcription factor CggR into yeast. With the developed biosensor, we robustly identified cell subpopulations with different FBP levels in mixed cultures, when subjected to flow cytometry and microscopy. Employing microfluidics, we were also able to assess the temporal FBP/glycolytic flux dynamics during the cell cycle. We anticipate that our biosensor will become a valuable tool to identify and study metabolic heterogeneity in cell populations.