Cargando…
Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness
Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sour...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920863/ https://www.ncbi.nlm.nih.gov/pubmed/31752343 http://dx.doi.org/10.3390/microorganisms7110579 |
_version_ | 1783481030481543168 |
---|---|
author | Guk, Jae-Ho Kim, Junhyung Song, Hyokeun Kim, Jinshil An, Jae-Uk Kim, Jonghyun Ryu, Sangryeol Jeon, Byeonghwa Cho, Seongbeom |
author_facet | Guk, Jae-Ho Kim, Junhyung Song, Hyokeun Kim, Jinshil An, Jae-Uk Kim, Jonghyun Ryu, Sangryeol Jeon, Byeonghwa Cho, Seongbeom |
author_sort | Guk, Jae-Ho |
collection | PubMed |
description | Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sources (118 carcasses and meat) and its characteristics to assess potential impacts on public health. Half of 56 C. coli isolates were HAT and most harbored various virulence genes including flaA, cadF, cdtA, ceuB, and wlaN. Moreover, 98.2% of C. coli isolates showed resistance to quinolones, including ciprofloxacin (CIP), and nine (16.1%) showed high-level resistance to ciprofloxacin (Minimum Inhibitory Concentration, MIC ≥ 32 μg/mL) and most of these were HAT. Based on genetic relatedness between C. coli from duck sources and those from human sources (PubMLST and NCBI), HAT isolates sharing the same MLST sequence types were significantly more prevalent than those not sharing the same sequence types as those from human sources. Therefore, HAT C. coli is prevalent in duck sources, and is most likely transmitted to humans through the food chain given its aerotolerance. This being so, it might pose a threat to public health given its virulence and antimicrobial resistance (AMR). This study will assist in improving control strategies to reduce farm-to-table HAT C. coli transmission to humans. |
format | Online Article Text |
id | pubmed-6920863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69208632019-12-24 Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness Guk, Jae-Ho Kim, Junhyung Song, Hyokeun Kim, Jinshil An, Jae-Uk Kim, Jonghyun Ryu, Sangryeol Jeon, Byeonghwa Cho, Seongbeom Microorganisms Article Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sources (118 carcasses and meat) and its characteristics to assess potential impacts on public health. Half of 56 C. coli isolates were HAT and most harbored various virulence genes including flaA, cadF, cdtA, ceuB, and wlaN. Moreover, 98.2% of C. coli isolates showed resistance to quinolones, including ciprofloxacin (CIP), and nine (16.1%) showed high-level resistance to ciprofloxacin (Minimum Inhibitory Concentration, MIC ≥ 32 μg/mL) and most of these were HAT. Based on genetic relatedness between C. coli from duck sources and those from human sources (PubMLST and NCBI), HAT isolates sharing the same MLST sequence types were significantly more prevalent than those not sharing the same sequence types as those from human sources. Therefore, HAT C. coli is prevalent in duck sources, and is most likely transmitted to humans through the food chain given its aerotolerance. This being so, it might pose a threat to public health given its virulence and antimicrobial resistance (AMR). This study will assist in improving control strategies to reduce farm-to-table HAT C. coli transmission to humans. MDPI 2019-11-19 /pmc/articles/PMC6920863/ /pubmed/31752343 http://dx.doi.org/10.3390/microorganisms7110579 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guk, Jae-Ho Kim, Junhyung Song, Hyokeun Kim, Jinshil An, Jae-Uk Kim, Jonghyun Ryu, Sangryeol Jeon, Byeonghwa Cho, Seongbeom Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title | Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title_full | Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title_fullStr | Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title_full_unstemmed | Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title_short | Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness |
title_sort | hyper-aerotolerant campylobacter coli from duck sources and its potential threat to public health: virulence, antimicrobial resistance, and genetic relatedness |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920863/ https://www.ncbi.nlm.nih.gov/pubmed/31752343 http://dx.doi.org/10.3390/microorganisms7110579 |
work_keys_str_mv | AT gukjaeho hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT kimjunhyung hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT songhyokeun hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT kimjinshil hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT anjaeuk hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT kimjonghyun hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT ryusangryeol hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT jeonbyeonghwa hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness AT choseongbeom hyperaerotolerantcampylobactercolifromducksourcesanditspotentialthreattopublichealthvirulenceantimicrobialresistanceandgeneticrelatedness |