Cargando…
Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches
Deep learning algorithms have achieved great success in cancer image classification. However, it is imperative to understand the differences between the deep learning and human approaches. Using an explainable model, we aimed to compare the deep learning-focused regions of magnetic resonance (MR) im...
Autores principales: | Akatsuka, Jun, Yamamoto, Yoichiro, Sekine, Tetsuro, Numata, Yasushi, Morikawa, Hiromu, Tsutsumi, Kotaro, Yanagi, Masato, Endo, Yuki, Takeda, Hayato, Hayashi, Tatsuro, Ueki, Masao, Tamiya, Gen, Maeda, Ichiro, Fukumoto, Manabu, Shimizu, Akira, Tsuzuki, Toyonori, Kimura, Go, Kondo, Yukihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920905/ https://www.ncbi.nlm.nih.gov/pubmed/31671711 http://dx.doi.org/10.3390/biom9110673 |
Ejemplares similares
-
Automated acquisition of explainable knowledge from unannotated histopathology images
por: Yamamoto, Yoichiro, et al.
Publicado: (2019) -
A data-driven ultrasound approach discriminates pathological high grade prostate cancer
por: Akatsuka, Jun, et al.
Publicado: (2022) -
Risk factor analysis of intravesical recurrence after retroperitoneoscopic nephroureterectomy for upper tract urothelial carcinoma
por: Yanagi, Masato, et al.
Publicado: (2021) -
Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis
por: Ueki, Masao, et al.
Publicado: (2012) -
Smooth-threshold multivariate genetic prediction incorporating gene–environment interactions
por: Ueki, Masao, et al.
Publicado: (2021)