Cargando…

High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a worse prognosis than other types. There are currently no specific approved treatments for TNBC. Albumin is a promising biomimetic material that may be fabricated into nanoparticles to possibly exert passive effects on...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hsin-Che, Chuang, Chih-Hung, Cheng, Meng-Hsuan, Lin, Yu-Chih, Fang, Yi-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920977/
https://www.ncbi.nlm.nih.gov/pubmed/31683822
http://dx.doi.org/10.3390/pharmaceutics11110569
_version_ 1783481057390100480
author Lin, Hsin-Che
Chuang, Chih-Hung
Cheng, Meng-Hsuan
Lin, Yu-Chih
Fang, Yi-Ping
author_facet Lin, Hsin-Che
Chuang, Chih-Hung
Cheng, Meng-Hsuan
Lin, Yu-Chih
Fang, Yi-Ping
author_sort Lin, Hsin-Che
collection PubMed
description Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a worse prognosis than other types. There are currently no specific approved treatments for TNBC. Albumin is a promising biomimetic material that may be fabricated into nanoparticles to possibly exert passive effects on targeted tumors. Irinotecan has been extensively used in clinical settings, although a high dosage is required due to its low efficiency of conversion into the active metabolite SN-38, also known as 7-ethyl-10-hydroxy-camptothecin. The aim of this work was to optimize SN-38-loaded bovine serum albumin nanoparticles (sBSANPs) and evaluate their potency against TNBC. The sBSANPs were characterized by a small size of about 134–264 nm, a negative charge of −37 to −40 mV, an entrapment efficiency of 59–71%, and a particle yield of 65–86%. The cytotoxicity assays using sBSANPs showed a higher potency specifically against both MDA-MB-468 and MDA-MB-231 cells (ER−, PR−, HER2−) compared to MCF-7 (ER+, PR+, HER2−), and exhibited an extremely low IC(50) at the nanomolar levels (2.01–6.82 nM). The release profiles indicated that SN-38 presented an initial burst release within 12 h, and sBSANPs had a slow release pattern. Flow cytometry results showed that the fluorescence intensity of sBSANPs was significantly higher than that of the control group. The confocal images also confirmed that sBSANPs were taken up by MDA-MB-468 cells. Moreover, we found that a larger BSANP size resulted in an increased hemolytic effect. In vivo animal studies demonstrated that loading of SN-38 into bovine serum albumin nanoparticles could minimize the initial concentration without extending the elimination half-life, but significantly minimized the Cmax (p < 0.001) as compared with irinotecan treatment.
format Online
Article
Text
id pubmed-6920977
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69209772019-12-24 High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer Lin, Hsin-Che Chuang, Chih-Hung Cheng, Meng-Hsuan Lin, Yu-Chih Fang, Yi-Ping Pharmaceutics Article Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a worse prognosis than other types. There are currently no specific approved treatments for TNBC. Albumin is a promising biomimetic material that may be fabricated into nanoparticles to possibly exert passive effects on targeted tumors. Irinotecan has been extensively used in clinical settings, although a high dosage is required due to its low efficiency of conversion into the active metabolite SN-38, also known as 7-ethyl-10-hydroxy-camptothecin. The aim of this work was to optimize SN-38-loaded bovine serum albumin nanoparticles (sBSANPs) and evaluate their potency against TNBC. The sBSANPs were characterized by a small size of about 134–264 nm, a negative charge of −37 to −40 mV, an entrapment efficiency of 59–71%, and a particle yield of 65–86%. The cytotoxicity assays using sBSANPs showed a higher potency specifically against both MDA-MB-468 and MDA-MB-231 cells (ER−, PR−, HER2−) compared to MCF-7 (ER+, PR+, HER2−), and exhibited an extremely low IC(50) at the nanomolar levels (2.01–6.82 nM). The release profiles indicated that SN-38 presented an initial burst release within 12 h, and sBSANPs had a slow release pattern. Flow cytometry results showed that the fluorescence intensity of sBSANPs was significantly higher than that of the control group. The confocal images also confirmed that sBSANPs were taken up by MDA-MB-468 cells. Moreover, we found that a larger BSANP size resulted in an increased hemolytic effect. In vivo animal studies demonstrated that loading of SN-38 into bovine serum albumin nanoparticles could minimize the initial concentration without extending the elimination half-life, but significantly minimized the Cmax (p < 0.001) as compared with irinotecan treatment. MDPI 2019-11-01 /pmc/articles/PMC6920977/ /pubmed/31683822 http://dx.doi.org/10.3390/pharmaceutics11110569 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lin, Hsin-Che
Chuang, Chih-Hung
Cheng, Meng-Hsuan
Lin, Yu-Chih
Fang, Yi-Ping
High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title_full High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title_fullStr High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title_full_unstemmed High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title_short High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer
title_sort high potency of sn-38-loaded bovine serum albumin nanoparticles against triple-negative breast cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920977/
https://www.ncbi.nlm.nih.gov/pubmed/31683822
http://dx.doi.org/10.3390/pharmaceutics11110569
work_keys_str_mv AT linhsinche highpotencyofsn38loadedbovineserumalbuminnanoparticlesagainsttriplenegativebreastcancer
AT chuangchihhung highpotencyofsn38loadedbovineserumalbuminnanoparticlesagainsttriplenegativebreastcancer
AT chengmenghsuan highpotencyofsn38loadedbovineserumalbuminnanoparticlesagainsttriplenegativebreastcancer
AT linyuchih highpotencyofsn38loadedbovineserumalbuminnanoparticlesagainsttriplenegativebreastcancer
AT fangyiping highpotencyofsn38loadedbovineserumalbuminnanoparticlesagainsttriplenegativebreastcancer