Cargando…
Uncoupling of Carbonic Anhydrase from Na-H exchanger-1 in Experimental Colitis: A Possible Mechanistic Link with Na-H Exchanger
In this study, we investigated a mechanistic link between Na–H exchanger-1 (NHE-1) and carbonic anhydrase (CA) in experimental colitis induced in the rats by intrarectal administration of trinitrobenzenesulphonic acid (TNBS). Western blot analysis showed CA-I and CA-II as the major isoforms and CA-I...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921068/ https://www.ncbi.nlm.nih.gov/pubmed/31694264 http://dx.doi.org/10.3390/biom9110700 |
Sumario: | In this study, we investigated a mechanistic link between Na–H exchanger-1 (NHE-1) and carbonic anhydrase (CA) in experimental colitis induced in the rats by intrarectal administration of trinitrobenzenesulphonic acid (TNBS). Western blot analysis showed CA-I and CA-II as the major isoforms and CA-IV as a minor one in the colon, and they all are expressed as minor isoforms in the ileum. Co-immunoprecipitation and confocal immunofluorescence microscopy showed colocalization of NHE-1 with CA-I and CA-II, but not with CA-IV. TNBS significantly reduced the levels of NHE-1 and CA protein isoforms in the colon, but not in the uninflamed ileum. A similar reduction profile of the expression of CA isozymes was also obtained in ex vivo treatment of normal colon strips with TNF-α. The level of uncoupling as detected by co-immunoprecipitation was significantly more pronounced. A peptide (83 aa) from the NHE-1 C-terminus demonstrated binding of CA-II only, but not of the CA-I or CA-IV isoform. Furthermore, the profile of inflammatory test markers confirmed inflammation in the tissue used. These findings taken together suggest an inflammation-induced uncoupling of CA and NHE-1, which might be a putative mechanism for reducing the activity of NHE-1 in experimental colitis. This uncoupling might lead to an intracellular accumulation of H(+,) resulting in acidosis and necrosis in the inflamed colon. |
---|