Cargando…

Transcriptome Analysis of Choke Stroma and Asymptomatic Inflorescence Tissues Reveals Changes in Gene Expression in Both Epichloë festucae and Its Host Plant Festuca rubra subsp. rubra

Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced toleran...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruying, Clarke, Bruce B., Belanger, Faith C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921078/
https://www.ncbi.nlm.nih.gov/pubmed/31744076
http://dx.doi.org/10.3390/microorganisms7110567
Descripción
Sumario:Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced tolerance to biotic and abiotic stresses conferred by the endophytes. Many Epichloë spp. are asexual, and those infections always remain asymptomatic. However, some Epichloë spp. have a sexual stage and produce a macroscopic fruiting body, a stroma, that envelops the developing inflorescence causing a syndrome termed “choke disease”. Here, we report a fungal and plant gene expression analysis of choke stroma tissue and asymptomatic inflorescence tissue of Epichloë festucae-infected strong creeping red fescue (Festuca rubra subsp. rubra). Hundreds of fungal genes and over 10% of the plant genes were differentially expressed when comparing the two tissue types. The differentially expressed fungal genes in the choke stroma tissue indicated a change in carbohydrate and lipid metabolism, as well as a change in expression of numerous genes for candidate effector proteins. Plant stress-related genes were up-regulated in the stroma tissue, suggesting the plant host was responding to the epiphytic stage of E. festucae as a pathogen.